• Title/Summary/Keyword: vacuum molding process

Search Result 83, Processing Time 0.031 seconds

The Effects of Vacuum-Molding Process Conditions on the Fluidity of A356 Alloy (A365 알루미늄합금의 유동도에 미치는 진공흡입조형 조건의 영향)

  • Oh, Young-Jin;Kim, Eun-Sik;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.173-178
    • /
    • 2005
  • The vacuum molding process is one of the clean-foundry molding-processes that can recycle molding sands repeatedly, because molding can be accomplished by introducing vacuum only among dry molding sands in flask. The effects of molding conditions such as sand grain fineness, vacuum pressure and coating thickness on the fluidity of A356 Al alloy were studied and the results was obtained that the fluidity length was decreased as the sand grain fineness number and coating thikness were decreased and the vacuum pressure was increased. A large amount of heat removal from the molten metal resulting from the vacuum suction during the vacuum molding process was the principal cause of this decrease in fluidity.

Fabrication of All-Solution Processed Transparent Silver Nanowire Electrode Using a Direct Printing Process

  • Baek, Jang-Mi;Lee, Rin;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.641-641
    • /
    • 2013
  • We report the transparentsilver nanowire electrode fabricated by a direct printing process, liquid-bridge-mediated nanotransfer molding. We fabricated silver nanowire arrays by liquidbridge- mediated nanotransfer molding using the silver nanoparticle ink and PEDOT:PSS polymer. Weinvestigated the formation of silver nanowire arrays by SEM and transmittance of the transparent silver nanowire electrode. We also measured the conductivity to confirm the potential of our approach.

  • PDF

Formability Evaluation of the Vacuum Resin Transfer Molding of a CFRP Composite Automobile Seat Cross Part (탄소섬유복합재료의 시트크로스 부품에서 진공수지주입성형에 의한 성형성 평가)

  • Kim, Kun-Young;Kwak, Sung-Hun;Han, Gyu-Dong;Park, Jin-Seok;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.24-29
    • /
    • 2017
  • In this study, a seat cross member was fabricated by optimizing the resin transfer molding processing of CFRP (Carbon Fiber Reinforced Plastics) materials. This seat cross member is used in automotive underbody parts and provides side impact support. The seat cross was manufactured via vacuum resin transfer molding. The process included 1min of resin injection, 8 mins of heating, and 1 min of cooling, for a total molding time of 10mins. Tensile test results showed an average breaking load of 21.50kN, a tensile strength of 404 MPa, and an elastic modulus of 46.2 GPa. As a result, the CFRP seat cross provides the same strength as a similar steel part, but weighs 42% less.

Mold Cavity Filling by Gating Design in Vacuum Molding Process (진공흡입주형 주조법에서 탕구방안에 따른 주형 충전 양상)

  • Kang, Bok-Hyun;Kim, Ki-Young;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Vacuum molding process(V-process) has several benefits such as a lower total production cost and a high quality casting comparing to the conventional sand molding. Influence of the gating design on the molten metal flow was investigated in this study. General criteria for the gating design of the castings and commercial codes for the flow and solidification analysis were used to attain the optimized gating design in V-process. Though mold cavity was filled smoothly under the low initial velocity of molten metal, molten metal dashed against the upper part of the mold before the completion of the mold filling with higher initial molten metal velocity and fell soon. This phenomenon may affect collapsing the mold shape, however it is thought that the possibility of burning out of the vinyl by the molten metal is not so high because vinyl is coated with refractory material.

Development of Polymeric Layer for Enhancing The Adhesion of Nano-devices Fabricated by The Nanotransfer Molding Method

  • Lee, Gi-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.634-634
    • /
    • 2013
  • Transfer molding methods have a problem that weak adhesion between nanostructures and substrates. It is important to make various nano scale applications, also the stability of nanostructure on substrate is related with device performance. We studied an effect of poly 4-vinylphenol (PVP) as the polymeric adhesion layer between organic nanowires and a Si substrate when the nanowires are transferred by liquid-bridge-mediated nanotransfer molding method (LB-nTM). Their structural stability was examined by optical microscopy, scanning electron microscopy as multiple transfer molding and washing process. Field-effect transistors were fabricated with organic semiconductor nanowires on a polymeric adhesion layer and their electrical properties showed no significant difference as the one without the adhesion layer. As a result, adhesion layer can be used in the washing process and making multi-layer nano-scale patterns.

  • PDF

Analysis of Mechanical Curing Properties Based on Vacuum Pressure of UV-Cured Composites (UV 경화형 복합재료의 진공압에 따른 기계적 경화 특성 분석)

  • Jang, Yong-Soo;Kim, Jeong-Keun;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, a UV-cured GFRP molding is made using a combination of hand lay-up and resin transfer molding, and its properties are analyzed. The molded plates produced using various vacuum pressures (0 mmHg, -450 mmHg, and -760 mmHg) are examined via a comparison of hand lay-up molding and resin transfer molding. Tests are conducted by processing tensile specimens (ASTM D-5083), flexural test specimens (ASTM D-790), and ILSS test specimens (ASTM D-2344) according to each ASTM standard with a molded plate. Similarly, the UV-cured GFRP molding is compared against GFRP using epoxy. It was confirmed that the mechanical strengths of all the specimens increased when the vacuum pressure was increased and when UV curing was applied. This is believed to be because as the vacuum pressure increases, the pores of the cured specimen are removed, thereby reducing defects, and the bonding force between the glass fiber and the resin is stronger than that of the epoxy resin. It is expected that if resin transfer molding methods and UV-cured resins are used for molding GFRP composites in industry, products with better mechanical properties and faster curing time will be produced.

A Study on the Low Pressure Injection Molding of Automotive Seat-back Cover (자동차용 시트백 커버의 저압사출성형에 관한 연구)

  • Ko, Byung-Doo;Ham, Kyoung-Chun;Jang, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.100-106
    • /
    • 2008
  • In this paper, the injection molding process of automotive seat-back cover is analyzed in terms of simulation and of experiment. FE analysis was used to obtain molding conditions such as injection pressure, filling pattern, packing, shrinkage. Vacuum system for low pressure injection molding is developed in the experiment. Low pressure injection molded parts have been compared with conventional molded parts in terms of molding quality and mechanical properties. Based on the results, good product and the productivity improvement can be obtained in low pressure injection molding for automotive seat-back cover.

A Study on the Manufacturing of Large Size Hollow Shape Parts for Prototype-Car using Rapid Prototyping Technology and Vacuum Molding (쾌속조형 기술과 진공성형법을 이용한 시작차량용 대형 중공 부품의 제작에 관한 연구)

  • 박경수;양화준;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.362-365
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have revolutionized traditional manufacturing methods. These techniques allow the user to fabricate a part directly from a conceptual model before investing in production tooling and help develop new models with significant short time. This paper suggests to new process to manufacture large size hollow shape parts for prototype-car using Rapid Prototyping technology and Vacuum Molding with the reduction of delivery time. In addition, This paper introduces the dividing and combining method to make large size RP master model in spite of the limit of the build chamber dimensions of commercialized RP system and post-processing method to achieve sufficient surface quality.

  • PDF

Preparing of Carbon Fiber Composites Using by Vacuum Bag Hot-press Molding Process and Comparison with the other Molding Processes (진공백 핫 프레스 성형공정을 이용한 탄소섬유 복합재료의 제조와 공정비교)

  • Heo, Won-Wook;Jeon, Gil Woo;An, Seung Kook
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.76-80
    • /
    • 2020
  • In this study, vacuum bag hot-press (V-HP) process can be used as an out-of-autoclave (OOA) process by improving the inefficient process of the autoclave forming method with excellent physical properties and surface quality. A carbon fiber composite was molded via V-HP process and analyzed the physical properties and microstructures between composites manufactured by autoclave (AC) process and hot-press process (HP). The tensile strength of the composite materials using the V-HP process was 320.6 MPa and the AC process samples found to be substantially close to the tensile strength of 335.3 MPa. As a result of confirming the surface quality of the composite material using SEM, it was confirmed that in the V-HP process, the removal state of pores due to volatile solvent in the resin was slightly lower than that of the AC process, but it had a considerably superior surface compared to the HP process.

A study on Resin Filling Analysis and Experiment by VAP and VaRTM Processes (VaRTM과 VAP 공정의 수지 충진실험 및 해석에 관한 연구)

  • Dong-Hwan Yoon;Kyeong-Ho Seo;Yu-Jung Kwon;Jin-Ho Choi
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.310-314
    • /
    • 2023
  • VaRTM(Vacuum assisted resin transfer molding) and VAP(Vacuum assisted process) processes are a type of RTM(Resin transfer molding) process, and are typical out-of-autoclave (OOA) processes that can manufacture large structures at low cost. In this paper, a resin filling test was conducted to compare the VaRTM and VAP processes, and the filling process and dimensional stability were compared. In addition, an analysis method to simulate the filling process was developed, and a dielectric sensor was used to detect the flow front of the resin, which was compared with the analysis results. From the resin filling test, the total filling time of the composite plate was measured to be 48 minutes for the VAP process and 145 minutes for the VaRTM process, and the filling time by the VAP process was reduced by about 67%. In addition, it was confirmed that the VAP process was superior to the VaRTM process in the thickness control ability and uniformity of the composite plate.