• 제목/요약/키워드: vacuum molding process

검색결과 83건 처리시간 0.029초

A365 알루미늄합금의 유동도에 미치는 진공흡입조형 조건의 영향 (The Effects of Vacuum-Molding Process Conditions on the Fluidity of A356 Alloy)

  • 오영진;김은식;김명한;홍영명
    • 한국주조공학회지
    • /
    • 제25권4호
    • /
    • pp.173-178
    • /
    • 2005
  • The vacuum molding process is one of the clean-foundry molding-processes that can recycle molding sands repeatedly, because molding can be accomplished by introducing vacuum only among dry molding sands in flask. The effects of molding conditions such as sand grain fineness, vacuum pressure and coating thickness on the fluidity of A356 Al alloy were studied and the results was obtained that the fluidity length was decreased as the sand grain fineness number and coating thikness were decreased and the vacuum pressure was increased. A large amount of heat removal from the molten metal resulting from the vacuum suction during the vacuum molding process was the principal cause of this decrease in fluidity.

Fabrication of All-Solution Processed Transparent Silver Nanowire Electrode Using a Direct Printing Process

  • 백장미;이린;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.641-641
    • /
    • 2013
  • We report the transparentsilver nanowire electrode fabricated by a direct printing process, liquid-bridge-mediated nanotransfer molding. We fabricated silver nanowire arrays by liquidbridge- mediated nanotransfer molding using the silver nanoparticle ink and PEDOT:PSS polymer. Weinvestigated the formation of silver nanowire arrays by SEM and transmittance of the transparent silver nanowire electrode. We also measured the conductivity to confirm the potential of our approach.

  • PDF

탄소섬유복합재료의 시트크로스 부품에서 진공수지주입성형에 의한 성형성 평가 (Formability Evaluation of the Vacuum Resin Transfer Molding of a CFRP Composite Automobile Seat Cross Part)

  • 김근영;곽성훈;한규동;박진석;조준행;이창훈;강명창
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.24-29
    • /
    • 2017
  • In this study, a seat cross member was fabricated by optimizing the resin transfer molding processing of CFRP (Carbon Fiber Reinforced Plastics) materials. This seat cross member is used in automotive underbody parts and provides side impact support. The seat cross was manufactured via vacuum resin transfer molding. The process included 1min of resin injection, 8 mins of heating, and 1 min of cooling, for a total molding time of 10mins. Tensile test results showed an average breaking load of 21.50kN, a tensile strength of 404 MPa, and an elastic modulus of 46.2 GPa. As a result, the CFRP seat cross provides the same strength as a similar steel part, but weighs 42% less.

진공흡입주형 주조법에서 탕구방안에 따른 주형 충전 양상 (Mold Cavity Filling by Gating Design in Vacuum Molding Process)

  • 강복현;김기영;김명한;홍영명
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.42-47
    • /
    • 2007
  • Vacuum molding process(V-process) has several benefits such as a lower total production cost and a high quality casting comparing to the conventional sand molding. Influence of the gating design on the molten metal flow was investigated in this study. General criteria for the gating design of the castings and commercial codes for the flow and solidification analysis were used to attain the optimized gating design in V-process. Though mold cavity was filled smoothly under the low initial velocity of molten metal, molten metal dashed against the upper part of the mold before the completion of the mold filling with higher initial molten metal velocity and fell soon. This phenomenon may affect collapsing the mold shape, however it is thought that the possibility of burning out of the vinyl by the molten metal is not so high because vinyl is coated with refractory material.

Development of Polymeric Layer for Enhancing The Adhesion of Nano-devices Fabricated by The Nanotransfer Molding Method

  • 이기석;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.634-634
    • /
    • 2013
  • Transfer molding methods have a problem that weak adhesion between nanostructures and substrates. It is important to make various nano scale applications, also the stability of nanostructure on substrate is related with device performance. We studied an effect of poly 4-vinylphenol (PVP) as the polymeric adhesion layer between organic nanowires and a Si substrate when the nanowires are transferred by liquid-bridge-mediated nanotransfer molding method (LB-nTM). Their structural stability was examined by optical microscopy, scanning electron microscopy as multiple transfer molding and washing process. Field-effect transistors were fabricated with organic semiconductor nanowires on a polymeric adhesion layer and their electrical properties showed no significant difference as the one without the adhesion layer. As a result, adhesion layer can be used in the washing process and making multi-layer nano-scale patterns.

  • PDF

UV 경화형 복합재료의 진공압에 따른 기계적 경화 특성 분석 (Analysis of Mechanical Curing Properties Based on Vacuum Pressure of UV-Cured Composites)

  • 장용수;김정근;고선호;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, a UV-cured GFRP molding is made using a combination of hand lay-up and resin transfer molding, and its properties are analyzed. The molded plates produced using various vacuum pressures (0 mmHg, -450 mmHg, and -760 mmHg) are examined via a comparison of hand lay-up molding and resin transfer molding. Tests are conducted by processing tensile specimens (ASTM D-5083), flexural test specimens (ASTM D-790), and ILSS test specimens (ASTM D-2344) according to each ASTM standard with a molded plate. Similarly, the UV-cured GFRP molding is compared against GFRP using epoxy. It was confirmed that the mechanical strengths of all the specimens increased when the vacuum pressure was increased and when UV curing was applied. This is believed to be because as the vacuum pressure increases, the pores of the cured specimen are removed, thereby reducing defects, and the bonding force between the glass fiber and the resin is stronger than that of the epoxy resin. It is expected that if resin transfer molding methods and UV-cured resins are used for molding GFRP composites in industry, products with better mechanical properties and faster curing time will be produced.

자동차용 시트백 커버의 저압사출성형에 관한 연구 (A Study on the Low Pressure Injection Molding of Automotive Seat-back Cover)

  • 고병두;함경춘;장동환
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.100-106
    • /
    • 2008
  • In this paper, the injection molding process of automotive seat-back cover is analyzed in terms of simulation and of experiment. FE analysis was used to obtain molding conditions such as injection pressure, filling pattern, packing, shrinkage. Vacuum system for low pressure injection molding is developed in the experiment. Low pressure injection molded parts have been compared with conventional molded parts in terms of molding quality and mechanical properties. Based on the results, good product and the productivity improvement can be obtained in low pressure injection molding for automotive seat-back cover.

쾌속조형 기술과 진공성형법을 이용한 시작차량용 대형 중공 부품의 제작에 관한 연구 (A Study on the Manufacturing of Large Size Hollow Shape Parts for Prototype-Car using Rapid Prototyping Technology and Vacuum Molding)

  • 박경수;양화준;최경현;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.362-365
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have revolutionized traditional manufacturing methods. These techniques allow the user to fabricate a part directly from a conceptual model before investing in production tooling and help develop new models with significant short time. This paper suggests to new process to manufacture large size hollow shape parts for prototype-car using Rapid Prototyping technology and Vacuum Molding with the reduction of delivery time. In addition, This paper introduces the dividing and combining method to make large size RP master model in spite of the limit of the build chamber dimensions of commercialized RP system and post-processing method to achieve sufficient surface quality.

  • PDF

진공백 핫 프레스 성형공정을 이용한 탄소섬유 복합재료의 제조와 공정비교 (Preparing of Carbon Fiber Composites Using by Vacuum Bag Hot-press Molding Process and Comparison with the other Molding Processes)

  • 허원욱;전길우;안승국
    • Composites Research
    • /
    • 제33권2호
    • /
    • pp.76-80
    • /
    • 2020
  • 본 연구에서는 우수한 물성과 표면품질을 가지는 오토클레이브 성형공법의 비효율적인 공정을 개선하여 탈 오토클레이브(Out-of-autoclave, 이하 OOA) 공정으로써 활용이 가능한 진공백 핫 프레스 공정(Vacuum bag hot-press, 이하 V-HP)을 이용하여 탄소섬유 복합재료를 제작하고 오토클레이브(Autoclave, 이하 AC) 공정과 핫 프레스공정(Hot-press, 이하 HP)으로 제작된 복합재료간 물성 및 미세구조를 분석하였으며, OOA공정으로의 가능성을 확인하였다. V-HP공정을 사용한 복합재료의 인장강도는 320.6 MPa로써, AC공정을 이용한 복합재료의 인장강도 335.3 MPa에 상당히 근접한 물성을 보이는 것을 확인하였다. SEM을 이용한 복합재료 표면품질을 확인한 결과 V-HP공정의 경우, 수지내 휘발용매로 인한 기공의 제거상태가 AC공정과 비교하여 다소 낮으나 HP공정과 비교하여 상당히 우수한 표면을 가지는 것을 확인할 수 있었다.

VaRTM과 VAP 공정의 수지 충진실험 및 해석에 관한 연구 (A study on Resin Filling Analysis and Experiment by VAP and VaRTM Processes)

  • 윤동환;서경호;권유정;최진호
    • Composites Research
    • /
    • 제36권5호
    • /
    • pp.310-314
    • /
    • 2023
  • VaRTM(Vacuum assisted resin transfer molding)과 VAP(Vacuum assisted process) 공정은 RTM(Resin transfer modling) 공정의 한 종류로서, 대형구조물을 저가에 제작할 수 있는 대표적인 탈 오토클레이브(OOA, Out of Autoclave) 공정이다. 본 논문에서는 VaRTM과 VAP 공정을 상호 비교하기 위하여 수지 충진시험을 진행하였으며, 충진과정과 치수 안정성 등을 상호 비교하였다. 또한, 충진과정을 모사할 수 있는 해석기법을 개발하였으며, 유전센서를 사용하여 수지의 유동선단을 검출하여 이를 해석결과와 상호 비교하였다. 수지 충진시험 결과, 복합재 평판의 총 충진시간은 VAP공정은 48분, VaRTM 공정은 145분으로 측정되어, VAP 공정에 의한 충진시간이 VaRTM 대비 약 67% 단축되었으며, VAP공정이 VaRTM 공정에 비해 복합재 평판의 두께조절능력과 균일도가 우수함을 확인하였다.