• Title/Summary/Keyword: vacuum infiltration

Search Result 48, Processing Time 0.026 seconds

Sodium Hypochlorite Solution As a Chemical Wounding Agent for Improving Agrobacterium-mediated Chinese Cabbage Seed Transformation (Sodium hypochlorite처리에 따른 배추종자의 Agrobacterium이용 형질전환 증대)

  • Shin Dong-Il;Park Hee-Sung
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.1034-1036
    • /
    • 2005
  • Chinese cabbage (Brassica campestris ssp. napus var. pekinensis Makino) seeds/seedlings were transformed via vacuum-infiltration with recombinant Agrobacterium tumefaciens LBA4404 cells. The agroinfiltration method was determined to be unsuccessful for Chinese cabbage transformation during the analysis of hepatitis B surface antigen expression by ELISA. However, treatment of sodium hypochlorite solution, prior to agroinfiltration, to pregerminated or germinating 1 day- or 2 days-old seeds was proven effectively to enhance transformation efficiency, suggesting that chemical wounding caused by sodium hypochlorite reaction might facilitate Agrobacterium infection and, therefore, transient gene expression in Chinese cabbage sprouts.

Effect of Cell Wall-Wounding Reagents on Agrobacterium-mediated Barley Seedling Transformation (Agrobacterium 이용 보리묘 형질전환에 대한 세포벽 상해물질의 효과)

  • Choi, Jang-Won;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.44 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Barley, a monocotyledonous plant, is relatively recalcitrant to the process of Agrobacterium-mediated genetic transformation. In this study, seedlings of six barley cultivars (Keunal-1-Ho, Saessal, Ol, Saechalssal, Seodunchal and Pungsanchalssal) were injured using alkali, oxidizing or reducing agents. They were then transformed using Agrobacterium via vacuum infiltration for the analysis of comparative GUS gene expression. It was determined that chemical injuries causing a slight growth retardation could overall enhance the GUS transformation rate. Hydrogen peroxide was determined to be the most effective.

Effects of Carbon Fiber Arrangement on Properties of LSI Cf-Si-SiC Composites (탄소섬유 배열이 LSI Cf-Si-SiC 복합체의 특성에 미치는 영향)

  • Ji, Young-Hwa;Han, In-Sub;Kim, Se-Young;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.561-566
    • /
    • 2008
  • Carbon fiber fabric-silicon carbide composites were fabricated by liquid silicon infiltration (LSI) process. The porous two-dimensional carbon fiber fabric performs were prepared by 13 plies of 2D-plain-weave fabric in a three laminating method, [0/90], [${\pm}45$], [$0/90/{\pm}45$] lay-up, respectively. Before laminating, a thin pyrolytic carbon (PyC) layer deposited on the surface of 2D-plain weave fabric sheets as interfacial layer with $C_3H_8$ and $N_2$ gas at $900^{\circ}C$. A densification of the preforms for $C_f-Si-SiC$ matrix composite was achieved according to the LSI process at $1650^{\circ}C$ for 30 min. in vacuum atmosphere. The bending strength of the each composite were measured and the microstructural consideration was performed by a FE-SEM.

An Efficient Plant Regeneration and Transformation System of Robinia pseudoacacia var. umbraculifera for Phytoremediation

  • Kwon, Hye-Jin;Woo, Seong-Min;Seul, Eun-Jun;Kim, Teh-Ryung;Shin, Dong-Un;Kim, Hag-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.293-298
    • /
    • 2007
  • Robinia pseudoacacia var. umbraculifera, commonly called umbrella black locust were regenerated after co-cultivation of internode segments with Agrobacterium tumefaciens which included yeast cadmium factor 1 (YCF 1) gene. The tolerance to cadmium and lead for plants can be increased by the YCF1 gene expression. Moreover, the recent studies have shown that YCF1 gene transgenic plants increase the accumulation of cadmium and lead into plant vacuoles. The effect of plant growth regulator such as 2,4-dichlorophenoxyacetic acid (2,4-D), ${\alpha}$-naphthaleneacetic acid (NAA), 6-benzyladenine (BA), and thidiazuron (TDZ) were studied to evaluate the propagation of plants through internode explants. The efficient induction of multiple adventitious shoots and callus were observed on a medium supplemented with 0.1 mg/L TDZ + 0.2 mg/L BA. To induce shoot elongation and rooting, regenerated shoots were transferred into basal MS medium without any plant growth regulator. Successful Agrobacterium tumefaciens mediated transformation was obtained by 20 min vacuum-infiltration with $50{\mu}M$ acetosyringone on the optimal multiple shoot induction medium with 30 mg/L hygromycin and 300 mg/L cefotaxime. To confirm the integration and expression of transgene, Polymerase Chain Reaction (PCR) and Reverse Transcriptase PCR (RT-PCR) were performed with specific primers. The frequency of transformation was approximately 18.94%. This study can be used to genetic engineering of phytoremediator.

Fabrication of Li2TiO3 Pebbles by Lithium Solution Penetration Method (리튬용액 침투방법에 의한 Li2TiO3 페블 제조)

  • Yu, Min-Woo;Park, Yi-Hyun;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.333-340
    • /
    • 2013
  • To fabricate spherical lithium titanate ($Li_2TiO_3$) pebbles which are used for a breeder material in fusion reactor, titanium oxide ($TiO_2$) granules were used as a starting material. The granules were pre-sintered, and then aqueous lithium nitrate solution infiltrated into the granules at vacuum condition. The granules were crystallized to $Li_2TiO_3$ after sintering under the control of process parameters. In this study, the concentration of lithium in the solution, as well as the number of penetration times and sintering temperature affected the final crystallite phase and the microstructure of the pebbles. In particular, the sphericity and size of the pebbles were effectively controlled by a technical rolling process. The useful spherical $Li_2TiO_3$ pebbles which have 10~20% porosity and 60~120 N compressive strength were obtained through the sintering at $1000{\sim}1100^{\circ}C$ in the multi-times infiltration process with 50 wt% solution. The physical properties of pebbles such as density, porosity and strength, can be controlled by a selection of $TiO_2$ powders and control of processing parameters. It can be thought that the lithium penetration method is a useful method for the fabrication of mass product of spherical $Li_2TiO_3$ pebbles.

Improvement of Pervaporative Water Flux of Mordenite Zeolite Membrane by Controlling Membrane Thickness (분리막 두께 조절에 의한 모데나이트 제올라이트 분리막의 투과증발 물 투과유속 증진 연구)

  • Yoon, Byung-jin;Kim, Young-mu;Lee, Du-Hyoung;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.263-275
    • /
    • 2019
  • In the present study, thickness of MOR zeolite membranes was controlled by changing seed size, seeding amount, and aging time of hydrothermal solution, and then effect of membrane thickness on pervaporative ethanol dehydration for 90 wt.% ethanol-water mixture was investigated. First, nanosize MOR zeolite seeds with a diameter of 20 to 30 nm was successfully prepared by planetary milling a laboratory synthesized MOR zeolites and the coating amount was controlled by seed concentration and infiltration volume of coating solution during vacuum-assisted seeding. As seeding amount decreased, membrane thickness was reduced up to around $4{\mu}m$. The MOR zeolite membrane having a thickness of $4{\mu}m$ showed a water/ethanol separation factor of 760 and water flux of $1.0kg/m^2h$. The excellent water flux was due to the reduced membrane thickness which was derived from the nanosize seed. Therefore, it could be concluded that membrane thickness control by using nanosize seed can be a crucial factor to improve pervaporative water flux of MOR zeolite membrane.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Study on hydroxy fatty acid contents changes and physiological responses under abiotic stresses in transgenic Camelina

  • Kim, Hyun-Sung;Lee, Hyun-Sook;Lim, Hyun-Gyu;Park, Won;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.191-191
    • /
    • 2017
  • Hydroxy fatty acid (HFA) is an important industrial resource that known to be extracted from seeds of Castor or Lesquerella. However, mass production of HFA from those crops are difficult because of their behavior or life cycle. In this study, we applied HFA synthesis related gene FAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT on bioenergy crop Camelina sativa. Furthermore, we determined NaCl or cold stress tolerance changes of transgenic Camelina. RcFAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT genes were cloned into multigene expression vector which is engineered with seed specific promoter of FAE1 or Napin. Combination of HFA genes multi-expression vector constructs were divided into Set3 (RcFAH12, RcPDAT1-2, RcLPCAT), Set4 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT), and Set5 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT, RcPDCT). Transgenic HFA synthesis Camelina plants were generated using agrobacterium-mediated vacuum infiltration system. Results of fatty acid composition of T1 transgenic Camelina seeds analyzed by GC-MS showed 9.5, 9.0, and 13.6 % of HFA contents in Set3#6, Set4#8, and Set5#10, respectively. Therefore, seeds of T2 generation were harvest from Set5#10 which is shown highest HFA contents, and, 17.7, 8.1 and 10.5 % of HFA contents were determined in Set5#10-5, Set5#10-8, and Set#10-10, respectively. However, 7.7% of C18:2 and 22.3 % of C18:3 among unsaturated fatty acids were decreased in Set5#10-5 than WT. Meanwhile, we confirmed abiotic stress responses in T2 transgenic Camelina Set5#10-5 and Set5#10-10 under 0, 100, 150, and 200 mM NaCl or 25, 15, and $10^{\circ}C$ temperature for 5 weeks. Both Set5#10-5 and Set5#10-10 showed lower growth in height than WT in control and NaCl condition. Growth of leaf length and width were similar in WT and Set5#10-10 but lower in Set5#10-5 under NaCl stress. Number of opened flowers showed that both transgenic Camelina were lower than WT under normal condition. But, WT and Set5#10-10 showed similar opened flower number in 100 and 200 mM NaCl. In cold stress, 15 and $10^{\circ}C$ treatment for 5 weeks did not showed significant changes in between WT and both transgenic lines even they showed different growth rate in control condition. Taken together, growth and development are delayed by expression of exogenous HFA related genes in transgenic lines but relative abiotic stress sensitivity is similar with WT. In conclusion, reduced C18:2 or C18:3 fatty acid composition of seed by HFA synthesis is resulted from lack of resource supplement for development at seedling stage but it is not affect NaCl and cold stress tolerance.

  • PDF