• 제목/요약/키워드: vacuum heat treatment

검색결과 342건 처리시간 0.025초

열간 금형강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effect of Vacuum Heat Treatment and Salt Bath Heat Treatment Conditions on Mechanical Properties of Hot Work Die Steel)

  • 김제돈;김경식;박기호
    • Design & Manufacturing
    • /
    • 제8권2호
    • /
    • pp.23-29
    • /
    • 2014
  • Salt bath heat treatment is usually used but recently vacuum heat treatment is increased for the heat treatment of hot work die steels. The differences in two heat treatment processes were compared by testing the mechanical properties of heat treated products. With two different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heating and quenching process.

  • PDF

금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel)

  • 김제돈;김경식
    • 열처리공학회지
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

진공침탄 공정기술을 이용한 자동변속기 부품 개발 (Development of Automatic Transmission Parts by Using Vacuum Carburizing Heat-treatment Technology)

  • 이원범;문경일;조용기;임경묵;변상교
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.211-216
    • /
    • 2010
  • Vacuum carburizing process is well known process for its environment-friendly, low-cost, high-quality characteristics, compared with gas carburizing. In this study, a research was carried out to develop a process of vacuum carburizing for essential components of automotive transmission that is difficult to control its distortion. As a result, vacuum carburizing process is superior to gas carburizing in terms of cost, environment and quality.

침탄된 STD61강의 기계적 성질에 미치는 진공열처리의 영향 (Effect of Vacuum Heat Treatment on Mechanical Properties of Carburized STD61 Steel)

  • 김경식
    • 열처리공학회지
    • /
    • 제30권1호
    • /
    • pp.17-20
    • /
    • 2017
  • Mechanical properties of STD61 steel are compared with those of carburized STD61 steel when both are quenched and tempered in vacuum heat treatment. Mechanical properties of carburized STD61 steel are improved better than STD61 steel in hardness, tensile strength, impact energy and wear resistance.

Kinetic Spray 공정으로 제조된 탄탈륨 코팅층의 열처리 분위기에 따른 미세조직 및 물성 (Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer)

  • 이지혜;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.32-38
    • /
    • 2015
  • The effect of heat treatment environment on the microstructure and properties of tantalum coating layer manufactured by kinetic spraying was examined. Heat treatments are conducted for one hour at $800^{\circ}C$, $900^{\circ}C$, and $1000^{\circ}C$ in two different environments of vacuum and Ar gas. Evaluation of microstructure and physical properties are conducted. High density ${\alpha}$-tantalum single phase coating layer with a porosity of 0.04% and hardness of 550 Hv can be obtained. As heat treatment temperature increases, porosity identically decreases regardless of heat treatment environment (vacuum and Ar gas). Hardness of heat treated coating layer especially in Ar gas environment deceases from 550 Hv to 490 Hv with increasing heat treatment temperature. That in vacuum environment deceases from 550 Hv to 530 Hv. The boundary between particles became vague as heat treatment temperature increases. Oxygen distribution of tantalum coating layer is minute after heat treatment in vacuum environment than Ar gas environment.

주조용 TiAl 합금의 조직 미세화를 위한 반복열처리 공정 조건에 관한 연구 (The Effects of Cyclic Heat Treatment Process for Fine Microstructure of TiAl Cast Alloy)

  • 공만식;양현석
    • 열처리공학회지
    • /
    • 제32권5호
    • /
    • pp.195-200
    • /
    • 2019
  • For expanding the applications and workability of TiAl alloy, elongation is very important property. Fine microstructure is needed for elongation and physical properties of TiAl alloys. In this study, The effects of cyclic heat treatment process for fine microstructure of Ti-46Al-Nb-W-Cr-Si-C alloy, which was made by VAR (vacuum arc remelting) and VIM(vacuum induction melting) centrifugal casting process, was investigated. Cycle heat treatment process was very effective for recrystallization of this TiAl system, which has microstructure size of $50{\sim}100{\mu}m$ through pre-heat treatment, cyclic heat treatment in ${\alpha}+{\gamma}$ phase region and solution heat treatment respectively. Refined grain size was finally confirmed by photos of optical microscope and scanning electron microscope.

열차폐 코팅에서 열산화물층 억제에 관한 연구 (Thermally Grown Oxide (TGO) Growth Inhibition in a Thermal Barrier Coating)

  • 김현지;김민태;박해웅
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.70-74
    • /
    • 2012
  • In thermal barrier coating (TBC) systems, the life of the coating depends on thermally grown oxide (TGO) layer because most of the failure of TBCs occurs when TGO growth increases. In order to inhibit TGO growth, process was additionally carried out before the heat treatment of the TBC coating layer at $1200^{\circ}C$ in air. In the additional process, heat treatment in vacuum furnace of < $10^{-5}$ torr was conducted for 7 h and 14 h before the heat treatment. The area and length of TGO, as well as the crack length in the TBC were characterized using a scanning electron microscope (SEM). The TGO thickness and crack of specimens pre-heat treated in vacuum furnace were reduced by 45% compare to those heat treated in furnace. Consequently, pre-heat treatment in a vacuum furnace process lead to effective inhibition of growth of the TGO.

세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향 (Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating)

  • 이정일;어순철;이영근
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF