• Title/Summary/Keyword: vacuum generation

Search Result 394, Processing Time 0.026 seconds

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer (압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구)

  • Park Sung-Hyun;Chu Soon-Nam;Lee Neung-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Development of Levitation Control for High Accuracy Magnetic Levitation Transport System (초정밀 자기부상 이송장치의 부상제어기 개발)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Lim, Jaewon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.557-561
    • /
    • 2016
  • Recently, in the manufacturing process of flat panel displays, mass production methods of inline system has been emerged. In particular the next generation OLED display manufacturing process, horizontal inline evaporation process has been tried. It is important for the success of OLED inline evaporation process to develop a magnetic levitation transport system capable of transferring a carrier equipped with a mother glass with high accuracy without any physical contact along the rail under vacuum condition. In the case of existing wheel-based transfer system, it is not suitable for OLED evaporation process requiring high cleanliness. On the other hand, the magnetic levitation transport system has an advantage that it does not generate any dust and it is possible to achieve high-precision control because there are not non-linear factors such as friction force. In this paper, we introduce the high-precision magnetic levitation transport system, which is currently under development, for OLED evaporation process.

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Study of Driving and Thermal Stability of Anode-type Ion Beam Source by Charge Repulsion Mechanism

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.3
    • /
    • pp.47-51
    • /
    • 2018
  • We fabricated an anode-type ion beam source and studied its driving characteristics of the initial extraction of ions using two driving mechanisms: a diffusion phenomenon and a charge repulsion phenomenon. For specimen exposed to the ion beam in two methods, the surface impurity element was investigated by using X-ray photoelectron spectroscopy. Upon Ar gas injection for plasma generation the ion beam source was operated for 48 hours. We found a Fe 2p peak 5.4 at. % in the initial ions by the diffusion mechanism while no indication of Fe in the ions released in the charge repulsion mechanism. As for a long operation of 200 min, the temperature of ion beam sources was measured to increase at the rate of ${\sim}0.1^{\circ}C/min$ and kept at the initial value of $27^{\circ}C$ for driving by diffusion and charge repulsion mechanism, respectively. In this study, we confirmed that the ion beam source driven by the charge repulsion mechanism was very efficient for a long operation as proved by little electrode damage and thermal stability.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Effects of the Micro-hole Target Structures on the Laser-driven Energetic Proton Generation

  • Pae, Ki-Hong;Choi, Il-Woo;Hahn, Sang-June;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Micro-hole targets are studied to generate energetic protons from laser-thin foil targets by using 2-dimensional particle-in-cell simulations. By using a small hole, the maximum energy of the accelerated proton is increased to 4 times higher than that from a simple planar target. The main proton acceleration mechanism of the hole-targets is the electrostatic field created between the fast electrons accelerated by the laser pulse ponderomotive force combined with the vacuum heating and the target rear surface. But in this case, the proton angular distribution shows double-peak shape, which means poor collimation and low current density. By using a small cone-shaped hole, the maximum proton energy is increased 3 times higher than that from a simple planar target. Furthermore, the angular distribution of the accelerated protons shows good collimation.

Thrust Performances of a Very Low-Power Micro-Arcjet

  • Hotaka Ashiya;Tsuyoshi Noda;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.611-616
    • /
    • 2004
  • In this study, microfabrication of a micro-arcjet nozzle with Fifth-harmonic generation Nd:YAG pulses (wavelength 213 nm) and its thrust performance tests were conducted. A micro-arcjet nozzle was machined in a 1.2 mm thick quartz plate. Sizes of the nozzle were 0.44 mm in width of the nozzle exit and constrictor diameter of 0.1 mm. For an anode, a thin film of Au (~100 nm thick) was deposited by DC discharge PVD in vacuum on divergent part of the nozzle. As for a cathode, an Au film was also coated on inner wall surface. In operational tests, a stable discharge was observed for mass flow of 1.0mg/sec, discharge current of 6 ㎃, discharge voltage of 600 V, or 3.6 W input power (specific power of 3.6 MW/kg). In this case, plenum pressure of the discharge chamber was 80 ㎪. With 3.6 W input power, thrust obtained was 1.4 mN giving specific impulse of 138 sec with thrust efficiency of 24 %.

  • PDF

Electrospun Calcium Metaphosphate Nanofibers: I. Fabrication

  • Kim, Ye-Na;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.144-147
    • /
    • 2007
  • Calcium metaphosphate (CMP) nanofibers with a diameter of ${\sim}600nm$ were prepared using electrospun CMP/polyvinylpyrrolidone (PVP) fibers through a process of drying for 5 h in air followed by annealing for 1 h at $650^{\circ}C$ in a vacuum. The viscosity of the CMP/PVP precursor containing 0.15 g/ml of PVP was 76 cP. Thermal analysis results revealed that the fibers were crystallized at $569^{\circ}C$. The crystal phase of the as-annealed fiber was determined to be ${\delta}-CMP\;({\delta}-Ca(PO_3)_2)$. However, the morphology of the fibers changed from smooth and uniform (as-spun fibers) to linked-particle characteristics with a tubular form most likely due to the decomposition of the inner PVP matrix. It is expected that this large amount of available surface area has the potential to provide unusually high bioactivity and fast responses in clinical hard tissue applications.

Characteristics of Semiconductor-Atomic Superlattice for SOI Applications (SOI 응용을 위한 반도체-원자 초격자 구조의 특성)

  • Seo, Yong-Jin;Park, Sung-Woo;Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Chang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.180-183
    • /
    • 2003
  • The monolayer of oxygen atoms sandwitched between the adjacent nanocrystalline silicon layers was formed by ultra high vacuum-chemical vapor deposition (UHV-CVD). This multi-layer Si-O structure forms a new type of superlattice, semiconductor-atomic superattice (SAS). According to the experimental results, high-resolution cross-sectional transmission electron microscopy (HRTEM) shows epitaxial system. Also, the current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the system may form an epitaxially grown insulating layer as possible replacement of silicon-on-insulator (SOI), a scheme investigated as future generation of high efficient and high density CMOS on SOI.

  • PDF