• Title/Summary/Keyword: vacuum deposition

Search Result 1,949, Processing Time 0.029 seconds

Study of the Energy Level Alignment of Organic Materials' Planar Junction Prepared by Electrospray Vacuum Deposition

  • Kim, Ji-Hun;Hong, Jong-Am;Seo, Jae-Won;Gwon, Dae-Gyeon;Maeng, Min-Jae;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.235-235
    • /
    • 2012
  • We investigated the energy levels of valence region at the planar junction of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) using ultraviolet photoemission spectroscopy (UPS) with ultra high vacuum. These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. In order to make the planar junction, we carried out the electrospray vacuum deposition (EVD) of PCBM onto spin-coated P3HT in high vacuum conditions (${\sim}10^{-5}-10^{-6}$). The planar junction interface exhibited 0.71 eV for the offset between P3HT HOMO and PCBM LUMO, which is different from the gap (0.85 eV) of individual values and is closer to the open circuit voltage of solar cells fabricated with the same material combination.

  • PDF

Microstructure and Tribological Properties of Ti-Si-C-N Nanocomposite Coatings Prepared by Filtered Vacuum Arc Cathode Deposition

  • Elangovan, T.;Kim, Do-Geun;Lee, Seung-Hun;Kim, Jong-Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • The demand for low-friction, wear and corrosion resistant components, which operate under severe conditions, has directed attentions to advanced surface engineering technologies. The Filtered Vacuum Arc Cathode Deposition (FVACD) process has demonstrated atomically smooth surface at relatively high deposition rates over large surface areas. Preparation of Ti-Si-C-N nanocomposite coatings on (100) Si and stainless steel substrates with tetramethylsilane (TMS) gas pressures to optimize the film preparation conditions. Ti-S-C-N coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The XRD results have confirmed phase formation information of TiSiCN coatings, which shows mixing of TiN and TiC structure, corresponding to (111), (200) and (220) planes of TiCN. The chemical composition of the film was investigated by XPS core level spectra. The binding energy of the elements present in the films was estimated using XPS measurements and it shows present of elemental information corresponding to Ti2p, N1s, Si 2p and C1. Film hardness and elastic modulus were measured with a nano-indenter, and film hardness reached 40 GPa. Tribological behaviors of the films were evaluated using a ball-on-disk tribometer, and the films demonstrated properties of low-friction and good wear resistance.

  • PDF

Fabrication of ZnO inorganic thin films by using UV-enhanced Atomic Layer Deposition

  • Song, Jong-Su;Yun, Hong-Ro;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.312.1-312.1
    • /
    • 2016
  • We have deposited ZnO thin films by ultraviolet (UV) enhanced atomic layer deposition using diethylznic (DEZ) and water (H2O) as precursors with UV light. The atomic layer deposition relies on alternating dose of the precursor on the surface and subsequent chemisorption of the precursors with self-limiting growth mechanism. Though ALD is useful to deposition conformal and precise thin film, the surface reactions of the atomic layer deposition are not completed at low temperature in many cases. In this experiment, we focused on the effects of UV radiation during the ALD process on the properties of the inorganic thin films. The surface reactions were found to be complementary enough to yield uniform inorganic thin films and fully react between DEZ and H2O at the low temperature by using UV irradiation. The UV light was effective to obtain conductive ZnO film. And the stability of TFT with UV-enhanced ZnO was improved than ZnO by thermal ALD method. High conductive UV-enhanced ZnO film have the potential to applicability of the transparent electrode.

  • PDF

Influence of LPPS Spraying Parameters on Deposition Efficiency of Zirconia Powder

  • Shi, Jian-Min;Hu, Zhong-Yin;Huang, Jing-Qi;Ding, Chuan-Xian
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.160-165
    • /
    • 1997
  • Yttria stabilized zirconia coating is an attractive material for several engineering applications. In order to produce coatings with consistent and reliable performance it is important to understand the influence of spraying parameters on the coating properties and optimize the spraying parameters. In this paper the low pressure plasma spray(LPPS) deposition of as-received zirconia powder has been investigated using simple one-factor-at-a-time approach. The deposition efficiency was chosen to evaluate the melting characteristics of the as-received zirconia powder. The results obtained indicated that the deposition efficiency of zirconia powder is very sensitive to the spraying parameters such as plasma gas flow rate and ranges from 24% to 57% The microstructure and the phase composition of zirconia coating deposited with the different plasma spraying parameters were also examined by SEM and XRD respectively. The relationship between deposition efficiency and the microstructure of zirconia coating was discussed.

  • PDF

A study on the physical characteristics and conductivities of $\alpha$ -Sexithienyl thin films with various deposition conditions (성막조건에 따른 $\alpha$-Sexithienyl 박막의 물리적 특성 및 전기전도도에 관한 연구)

  • 박용인;권오관;오세운;최종선;김영관;신동명;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.91-94
    • /
    • 1997
  • $\alpha$-sexithienyl($\alpha$-6T) thin films were deposited by Organic Molecular Beam Deposition(OMBD) technique, where the $\alpha$-6T was synthesized and purified by the sublimation method. The thin films of the $\alpha$-6T were deposited under various deposition conditions. The effects of deposition rate, substrate temperature. and vacuum pressure an the formation of these films have been studied. The molecular orientations of $\alpha$-6T films were investigated with the polarized electronic absorption spectroscopy. The molecules in the $\alpha$-6T film deposited at a low deposition rate under a high vacuum were aligned almost perpendicular to the substrate. The film deposited at an elevated substrate temperature (~9 $O^{\circ}C$) showed higher conductivity than the film deposited at room temperature.

  • PDF

CIGS Thin Film Fabrication Using Spray Deposition Technique (스프레이 분무법을 이용한 CIGS 태양전지 박막의 합성)

  • Cho, Jung-Min;Bae, Eun-Jin;Suh, Jeong-Dae;Song, Ki-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.250-250
    • /
    • 2010
  • We have prepared CIGS thin film absorber layers with simple solution spray deposition technique and thin film were synthesized with different atomic ratio. CIGS thin films were synthesized using non-vacuum solution deposition method on pre-heated sodalime glass substrates and Mo-coated soadlime glass substrate. In precursor solution were Cu : In : Ga: S ratio 4 : 3 : 2 : 8 and the crystal type of sprayed thin film were CIGS chalcopyrite structures. This structure was identified as typical chalcopyrite tetragonal structure with XRD analysis. This result showed that CIGS solution deposition technique has potential for the one step synthesis and low cost fabrication process for CIS or CIGS thin film absorber layer.

  • PDF

Synthesis of Zirconium Oxides on silicon by Radio-Frequency Magnetron Sputtering Deposition

  • Ma, Chunyu;Zhang, Qingyu
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.83-87
    • /
    • 2003
  • Zirconium oxide films have been synthesized by radio-frequency magnetron sputtering deposition on n-Si(001) substrate with metal zirconium target at variant $O_2$ partial pressures. The influences of $O_2$ partial pressures of the morphology, deposition rate, microstructure, and the dielectric constant of $ZrO_2$ have been discussed. The results show that deposition rate of $ZrO_2$ films decreases, the roughness, and the thickness of the native $SiO_2$ interlayer increases with the increase of $O_2$ partial pressure. $ZrO_2$ films synthesized at low $O_2$ partial pressure are amorphous and monoclinic polycrystalline in nanometer scale at low $O_2$ partial pressure. The relative dielectrics of $ZrO_2$ films are in the range of 12 to 25.

The ZnS Film Deposition Technology for Cd-free Buffer Layer in CIGS Solar Cells

  • Lee, Jae-Hee;Hwang, Do-Weon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.218-218
    • /
    • 2011
  • The CIGS Solar Cells have the highest conversion efficiency in the film-type solar cells. They consist of p-type CuInSe2 film and n-type ZnO film. The CdS films are used as buffer layer in the CIGS solar cells since remarkable difference in the lattice constant and energy band gap of two films. The CdS films are toxic and make harmful circumstances. The CdS films deposition process need wet process. In this works, we design and make the hitter and lamp reflection part in the sputtering system for the ZnS films deposition as buffer layer, not using wet process. Film thickness, SEM, and AFM are measured for the uniformity valuation of the ZnS films. We conclude the optimum deposition temperature for the films uniformity less than 1.6%. The ZnS films deposited by the sputtering system are more dense and uniform than the CdS films deposited by the Chemical Bath Deposition Method(CBD) for the CIGS Solar Cells.

  • PDF