• Title/Summary/Keyword: vaccine development

Search Result 453, Processing Time 0.033 seconds

Development of a New Gut-targeted Oral Typhoid Vaccine Ty21a Encasulated within Alginate Enteric Beads (알긴산 장용 비드에 봉입한 새로운 장 표적성 경구용 장티푸스 Ty21a 백신의 개발)

  • 장윤정;정성균;박동우;김희준;김기호
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.536-544
    • /
    • 2001
  • increase the viability of oral typhoid vaccine during the passage through the castro-intes-tidal tract, numerous attempts have been made including the vaccine coating. However problems such as high death rate during the coating process and its instability in the gastric juice still remain to be solved. In this study, the oral vaccine was made as the micro-enteric beads by adding Salmomella typhi Ty21a cells to sodium alginate solution and spraying onto calcium chloride solution (ionotropic relation method). The vaccine showed more than 90% of its original viability after treating it for 1 hour in the artificial gastric juice (37$^{\circ}C$, 300 rpm). The clearance rate of the Ty21a in the liver and spleen of the mice orally administrated with coated Ty21a was similar to that of the mice intraperitoneally administrated with uncoated Ty21a. The peripheral blood lymphocytes (PBL) isolated from the mice orally administered with this vaccine produced 15.5 fold higher specific IgA antibody titer than that from the control mice administerd with saline solution. furthermore, the mice treated with the coated Ty21a had higher survival rates (50~87%) than the control mice treated with saline solution (0~10%) in the intraperitoneal challenge test with wild type S. typhi Ty21a cells. These results suggest that the alginate-based coating technique is effective to protect live Ty21a from acidic environments, and produces better intestinal immune responses thereby providing a potentially excellent oral typhoid vaccine.

  • PDF

Impact of Renewable Energy on Extension of Vaccine Cold-chain: a case study in Nepal (신재생 에너지의 백신 콜드체인 확장 효과: 네팔 사례 연구)

  • Kim, Min-Soo;Mun, Jeong-Wook;Yu, Jongha;Kim, Min-Sik;Bhandari, Binayak;Bak, Jeongeun;Bhattachan, Anuj;Mogasale, Vittal;Chu, Won-Shik;Lee, Caroline Sunyong;Song, Chulki;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 2020
  • Renewable energy (RE) is essential to comprise sustainable societies, especially, in rural villages of developing countries. Furthermore, application of off-grid RE systems to health care can improve the quality of life. In this research, a RE-based vaccination supply management system was constructed to enlarge the cold-chain in developing countries for the safe storage and delivery of vaccines. The system was comprised of the construction of RE plants and development of vaccine carriers. RE plants were constructed and connected to health posts in local villages. The cooling mechanism of vaccine carriers was improved and monitoring devices were installed. The effect of the system on vaccine cold-chain was evaluated from the field test and topographical analysis in the southern village of Nepal. RE plants were normally operated for the vaccine refrigerator in the health post. The modified vaccine carriers had a longer operation time and better temperature control via monitoring and RE-based recharging functionality. The topographical analysis estimated that the system can cover larger region. The system prototype showed great potential regarding the possibility of a sustainable and enlarged cold-chain. Thus, RE-based vaccine supply management is expected to facilitate vaccine availability while minimizing waste in the supply chain.

A Bivalent Inactivated Vaccine Prevents Enterovirus 71 and Coxsackievirus A16 Infections in the Mongolian Gerbil

  • Eun-Je Yi;Young-In Kim;Seung-Yeon Kim;Sung Hyun Ahn;Hyoung Jin Lee;Bohyun Suh;Jaelim Yu;Jeehye Park;Yoon Jung Lee;Eunju Jung;Sun-Young Chang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.350-358
    • /
    • 2023
  • Hand-foot-and-mouth disease (HFMD) is a viral infectious disease that occurs in children under 5 years of age. Its main causes are coxsackievirus (CV) and enterovirus (EV). Since there are no efficient therapeutics for HFMD, vaccines are effective in preventing the disease. To develop broad coverage against CV and EV, the development of a bivalent vaccine form is needed. The Mongolian gerbil is an efficient and suitable animal model of EV71 C4a and CVA16 infection used to investigate vaccine efficacy following direct immunization. In this study, Mongolian gerbils were immunized with a bivalent inactivated EV71 C4a and inactivated CVA16 vaccine to test their effectiveness against viral infection. Bivalent vaccine immunization resulted in increased Ag-specific IgG antibody production; specifically, EV71 C4a-specific IgG was increased with medium and high doses and CVA16-specific IgG was increased with all doses of immunization. When gene expression of T cell-biased cytokines was analysed, Th1, Th2, and Th17 responses were found to be highly activated in the high-dose immunization group. Moreover, bivalent vaccine immunization mitigated paralytic signs and increased the survival rate following lethal viral challenges. When the viral RNA content was determined from various organs, all three doses of bivalent vaccine immunization were found to significantly decrease viral amplification. Upon histologic examination, EV71 C4a and CVA16 induced tissue damage to the heart and muscle. However, bivalent vaccine immunization alleviated this in a dose-dependent manner. These results suggest that the bivalent inactivated EV71 C4a/CVA16 vaccine could be a safe and effective candidate HFMD vaccine.

A Synthetic Tul4 and FopA Peptide Cocktail of Francisella tularensis Induces Humoral and Cell-Mediated Immune Responses in Mice

  • Oh, Hanseul;Kim, C-Yoon;Kim, Chang-Hwan;Hur, Gyeung-Haeng;Park, Jae-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1613-1619
    • /
    • 2016
  • Francisella tularensis is a highly virulent pathogen of humans and other mammals. Moreover, F. tularensis has been designated a category A biothreat agent, and there is growing interest in the development of a protective vaccine. In the present study, we determine the in vitro and in vivo immune responses of a subunit vaccine composed of recombinant peptides Tul4 and FopA from epitopes of the F. tularensis outer membrane proteins. The recombinant peptides with adjuvant CpG induced robust immunophenotypic change of dendritic cell (DC) maturation and secretion of inflammatory cytokines (IL-6, IL-12). In addition, the matured DCs enabled ex vivo proliferation of naive splenocytes in a mixed lymphocyte reaction. Lastly, we determined the in vivo immune response by assessment of antibody production in C57BL/6 mice. Total IgG levels were produced after immunization and peaked in 6 weeks, and moreover, Tul4-specific IgG was confirmed in the mice receiving peptides with or without CpG. Based on these results, we concluded that the recombinant peptides Tul4 and FopA have immunogenicity and could be a safe subunit vaccine candidate approach against F. tularensis.

Recent Advances in the Prevention of RSV in Neonates and Young Infants

  • Ki Wook Yun
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Respiratory syncytial virus (RSV) is a pathogen with a high burden of disease and social cost among infants worldwide, but the development of a vaccine has been delayed. The recent understanding of the pathogenesis of RSV, progress in reverse genetics, and successful implementation of other maternal immunizations have prompted the recent rapid development of monoclonal antibodies (mAbs) and vaccines for RSV prevention. Phase 3 clinical trials for two next-generation mAbs (nirsevimab and clesrovimab) and two maternal RSV pre-F vaccines are currently underway or have been recently completed. Soon, we might be able to protect young infants through long-acting mAbs and/or maternal immunization. Additionally, the development of live-attenuated vaccine candidates that are capable of avoiding enhanced RSV disease is ongoing. We need to gain familiarity with these newly developed strategies and collect epidemiological data on domestic RSV to adequately prepare for a new era of RSV prevention.

Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination

  • Kim, Sae-Hae;Lee, Kyung-Yeol;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.165-175
    • /
    • 2012
  • Vaccination is one of the most effective methods available to prevent infectious diseases. Mucosa, which are exposed to heavy loads of commensal and pathogenic microorganisms, are one of the first areas where infections are established, and therefore have frontline status in immunity, making mucosa ideal sites for vaccine application. Moreover, vaccination through the mucosal immune system could induce effective systemic immune responses together with mucosal immunity in contrast to parenteral vaccination, which is a poor inducer of effective immunity at mucosal surfaces. Among mucosal vaccines, oral mucosal vaccines have the advantages of ease and low cost of vaccine administration. The oral mucosal immune system, however, is generally recognized as poorly immunogenic due to the frequent induction of tolerance against orally-introduced antigens. Consequently, a prerequisite for successful mucosal vaccination is that the orally introduced antigen should be transported across the mucosal surface into the mucosa-associated lymphoid tissue (MALT). In particular, M cells are responsible for antigen up-take into MALT, and the rapid and effective transcytotic activity of M cells makes them an attractive target for mucosal vaccine delivery, although simple transport of the antigen into M cells does not guarantee the induction of specific immune responses. Consequently, development of mucosal vaccine adjuvants based on an understanding of the biology of M cells has attracted much research interest. Here, we review the characteristics of the oral mucosal immune system and delineate strategies to design effective oral mucosal vaccines with an emphasis on mucosal vaccine adjuvants.

Codelivery of IL-7 Augments Multigenic HCV DNA Vaccine-induced Antibody as well as Broad T Cell Responses in Cynomolgus Monkeys

  • Park, Su-Hyung;Song, Mi-Young;Nam, Hyo-Jung;Im, Se-Jin;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.198-205
    • /
    • 2010
  • Background: A crucial limitation of DNA vaccines is its weak immunogenicity, especially in terms of eliciting antibody responses in non-human primates or humans; therefore, it is essential to enhance immune responses to vaccination for the development of successful DNA vaccines for humans. Methods: Here, we approached this issue by evaluating interleukin-7 (IL-7) as a genetic adjuvant in cynomolgus monkeys immunized with multigenic HCV DNA vaccine. Results: Codelivery of human IL-7 (hIL-7)-encoding DNA appeared to increase DNA vaccine-induced antibody responses specific for HCV E2 protein, which plays a critical role in protecting from HCV infection. HCV-specific T cell responses were also significantly enhanced by codelivery of hIL-7 DNA. Interestingly, the augmentation of T cell responses by codelivery of hIL-7 DNA was shown to be due to the enhancement of both the breadth and magnitude of immune responses against dominant and subdominant epitopes. Conclusion: Taken together, these findings suggest that the hIL-7-expressing plasmid serves as a promising vaccine adjuvant capable of eliciting enhanced vaccine-induced antibody and broad T cell responses.

Recent Studies of Edible Plant Vaccine for Prophylactic Medicine against Virus-mediated Diseases (바이러스 질병 예방을 위한 식물 경구 백신 연구 동향)

  • Hahn, Bum-Soo;Park, Jong-Sug;Kim, Hyeong-Kuk;Ha, Sun-Hwa;Cho, Kang-Jin;Kim, Yong-Hwan;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2004
  • Transgenic plants have been studied as delivery system for edible vaccine against various diseases. Edible plant vaccines have several potential advantages as follows: an inexpensive source of antigen, easy administration, reduced need for medical personnel, economical to mass produce and easy transport, heat-stable vaccine without refrigerator, generation of systemic and mucosal immunity and safe antigen without fetal animal-virus contaminants. The amount of recombinant antigens in transgenic plants ranged from 0.002 to 0.8% in total soluble protein, depending on promoters for the expression of interested genes and plants to be used for transformation. Throughout the last decade, edible plant vaccine made notable progresses that protect from challenges against virus or bacteria. However edible plant vaccines have still problems that could be solved. First, the strong promoter or inducible promoter or strategy of protein targeting could be solved to improve the low expression of antigens in transgenic plants. Second, the transformation technique of target plant should be developed to be able to eat uncooked. Third, marker-free vector could be constructed to be more safety. In this review we describe advances of edible plant vaccines, focusing on the yields depending on plants/promoters employed and the results of animal/clinical trials, and consider further research for the development of a new plant-derived vaccine.

The Impact of Brand Equity on Consumer Intention: A Case Study for COVID-19 Vaccine Products in Vietnam

  • VO, Minh Sang;NGUYEN, Trung Hau;THACH, Thao Vy;TRAN, Doan Vy;HOANG, Nguyen Huong Giang;PHAM, Ngoc Phuong Trang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.239-247
    • /
    • 2022
  • Maintaining and expanding brand equity is regarded as an essential component of brand development. Effective management of brand equity leads to more opportunities for brand extension and the ability to draw in more customers. Brand equity, in particular, has a positive impact on consumer purchase intention. The purpose of this study is to look into the relationships between brand equity and consumption intention from the perspective of Vietnamese customers of India's COVID-19 vaccine products. Primary data is aggregated from 475 Vietnamese citizens with different occupations and backgrounds 18 years of age or older. The findings of the study show that consumption intention is positively inspired by brand equity, including brand association and brand quality. If consumers perceive high brand equity, it will have a higher impact on promoting consumption intention to the brand. India's COVID-19 vaccine needs to invest more in building brand equity in the Vietnamese market if it wants to increase the consumption choices of Vietnamese people. To create a good brand association and brand quality for India's COVID-19 vaccine, it is necessary to focus on communicating the good properties of the Indian-made vaccine such as safe, high protective effect, high immunity and protection, and long duration of immunity of vaccines.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.