• Title/Summary/Keyword: vaccine adjuvant

Search Result 125, Processing Time 0.031 seconds

The Evolution and Value of Diphtheria Vaccine (디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구)

  • Bae, Kyung-Dong
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.

Quadrivalent Combined Vaccine, Including Diphtheria Toxoid, Tetanus Toxoid, Detoxified Whole Cell Pertussis, and Hepatitis B Surface Antigen

  • Bae, Cheon-Soon;Lim, Gwan-Yeul;Kim, Jong-Su;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.338-343
    • /
    • 2003
  • Various factors, such as the adsorption pH, adjuvant dose, and adjuvant age, which affect the adsorption degree and immunogenicity of an antigen, were investigated. In addition, the effect of pH, antigen content, and adjuvant content on immunogenicity was also studied through animal experiments. Within the ranges studied, a low pH for adsorption, freshly preformed gel, and low pH formulation for the combined DTwP-HepB vaccine were preferrable for the adsorption of the antigens. In addition, a higher DT content was found to have a positive effect on the HBsAg immunogenicity in the combined vaccine. Accordingly, considering the factors affecting the adsorption rate and immunogenicity of the antigens, a novel DTwP-HepB vaccine (40 Lf/ml of diphtheria toxoid, 15 Lf/ml of tetanus toxoid, 20 OU/ml of detoxified whole cell pertussis, $24\;\mu\textrm{g}$ of HBsAg, $24\;\mu\textrm{g}\;Al/ml\;of \;Al(OH)_3\;gel,\;776\;\mu\textrm{g}\; Al/ml\;of\;AIPO_4\;gel$, and pH 7.1) was developed, whose immunogenicity was comparable to the case of administrating, separately and simultaneously, a combined DTwP vaccine (40 Lf/ml of diphtheria toxoid, 15 Lf/ml of tetanus toxoid, 20 OU/ml of detoxified whole cell pertussis, $300\;\mu\textrm{g}\;Al/ml\;of\; AIPO_4\;gel$, and pH 7.1) and mono HepB vaccine [$Hepavax^{\circledR},\;24\;\mu\textrm{g}/ml$ of HBsAg and $500\;\mu\textrm{g}\;Al/ml\;of\;Al(OH)_3\;gel$], which satisfies the potency criteria of the K-FDA for a combined DTwP vaccine and mono HepB vaccine.

Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data

  • Kim, Duk Kyung;Won, Kyeong Hye;Moon, Seung Hyun;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1044-1051
    • /
    • 2016
  • The present study compared the differential functions of two groups of adjuvants, Montanide incomplete Seppic adjuvant (ISA) series and Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) formulations, in chicken by analyzing published microarray data associated with each type of vaccine adjuvants. In the biological function analysis for differentially expressed genes altered by two different adjuvant groups, ISA series and QCDC formulations showed differential effects when chickens were immunized with a recombinant immunogenic protein of Eimeria. Among the biological functions, six categories were modified in both adjuvant types. However, with respect to "Response to stimulus", no biological process was modified by the two adjuvant groups at the same time. The QCDC adjuvants showed effects on the biological processes (BPs) including the innate immune response and the immune response to the external stimulus such as toxin and bacterium, while the ISA adjuvants modified the BPs to regulate cell movement and the response to stress. In pathway analysis, ISA adjuvants altered the genes involved in the functions related with cell junctions and the elimination of exogenous and endogenous macromolecules. The analysis in the present study could contribute to the development of precise adjuvants based on molecular signatures related with their immunological functions.

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin;Nguyen, Minh Trang
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

Increased Immunogenicity and Protective Efficacy of a P. aeruginosa Vaccine in Mice Using an Alum and De-O-Acylated Lipooligosaccharide Adjuvant System

  • Ryu, Ji In;Wui, Seo Ri;Ko, Ara;Do, Hien Thi Thu;Lee, Yeon Jeong;Kim, Hark Jun;Rhee, Inmoo;Park, Shin Ae;Kim, Kwang Sung;Cho, Yang Je;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1539-1548
    • /
    • 2017
  • Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that commonly causes fatal infections in cystic fibrosis and burn patients as well as in patients who are hospitalized or have impaired immune systems. P. aeruginosa infections are difficult to treat owing to the high resistance of the pathogen to conventional antibiotics. Despite several efforts, no effective prophylactic vaccines against P. aeruginosa are currently available. In this study, we investigated the activity of the CIA06 adjuvant system, which is composed of alum and de-O-acylated lipooligosaccharide, on a P. aeruginosa outer membrane protein (OMP) antigen vaccine in mice. The results indicated that CIA06 significantly increased the antigen-specific IgG titers and opsonophagocytic activity of immune sera against P. aeruginosa. In addition, the antibodies induced by the CIA06-adjuvanted vaccine exhibited higher cross-reactivity with heterologous P. aeruginosa strains. Finally, mice immunized with the CIA06-adjuvanted vaccine were effectively protected from lethal P. aeruginosa challenge. Based on these data, we suggest that the CIA06 adjuvant system might be used to promote the immunogenicity and protective efficacy of the P. aeruginosa OMP vaccine.

Effect of Dehydration and Rehydration of the pH-Sensitive Liposomes Containing Chimeric gag-V3 Virus Like Particle on Their Long-term Stability

  • Chang, Jin-Soo;Park, Myeong-Jun;Kim, Tae-Yeon;Woo, Gyu-Jin;Chung, Soo-il;Cheong, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.66-71
    • /
    • 1999
  • One of the practical limitations with the use of liposomes for delivery of the pharmaceutical substances such antigens is that liposomes are relatively unstable in storage. In order to extend the stability of liposome in storage without affecting their functional activity, solution-type liposomes were dehydrated to form a structurally intact dry liposomes. Comparative immunological evaluation was carried out for both dry and solution-type liposomes containing gag-V3 chimera, consequently it was found that dry liposomes elicited both humoral and cellular response as efficiently as solution-type liposemes did against the same gag-V3 antigen. Especially, long-term stability of the liposomes was remarkably enhanced by the dehydration made to loposomes without a significant change in its ability to elicit immune response in vivo. These results indicate that dry pH-sensitive liposome may become an effective delivery and adjuvant system for general vaccine development.

  • PDF

Enhancing immune responses to inactivated foot-and-mouth virus vaccine by a polysaccharide adjuvant of aqueous extracts from Artemisia rupestris L.

  • Wang, Danyang;Yang, Yu;Li, Jinyu;Wang, Bin;Zhang, Ailian
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.30.1-30.15
    • /
    • 2021
  • Background: New-generation adjuvants for foot-and-mouth disease virus (FMDV) vaccines can improve the efficacy of existing vaccines. Chinese medicinal herb polysaccharide possesses better promoting effects. Objectives: In this study, the aqueous extract from Artemisia rupestris L. (AEAR), an immunoregulatory crude polysaccharide, was utilized as the adjuvant of inactivated FMDV vaccine to explore their immune regulation roles. Methods: The mice in each group were subcutaneously injected with different vaccine formulations containing inactivated FMDV antigen adjuvanted with three doses (low, medium, and high) of AEAR or AEAR with ISA-206 adjuvant for 2 times respectively in 1 and 14 days. The variations of antibody level, lymphocyte count, and cytokine secretion in 14 to 42 days after first vaccination were monitored. Then cytotoxic T lymphocyte (CTL) response and antibody duration were measured after the second vaccination. Results: AEAR significantly induced FMDV-specific antibody titers and lymphocyte activation. AEAR at a medium dose stimulated Th1/Th2-type response through interleukin-4 and interferon-γ secreted by CD4+ T cells. Effective T lymphocyte counts were significantly elevated by AEAR. Importantly, the efficient CTL response was remarkably provoked by AEAR. Furthermore, AEAR at a low dose and ISA-206 adjuvant also synergistically promoted immune responses more significantly in immunized mice than those injected with only ISA-206 adjuvant and the stable antibody duration without body weight loss was 6 months. Conclusions: These findings suggested that AEAR had potential utility as a polysaccharide adjuvant for FMDV vaccines.

DNA Vaccines Encoding Toxoplasma gondii Cathepsin C 1 Induce Protection against Toxoplasmosis in Mice

  • Han, Yali;Zhou, Aihua;Lu, Gang;Zhao, Guanghui;Sha, Wenchao;Wang, Lin;Guo, Jingjing;Zhou, Jian;Zhou, Huaiyu;Cong, Hua;He, Shenyi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.505-512
    • /
    • 2017
  • Toxoplasma gondii cathepsin C proteases (TgCPC1, 2, and 3) are important for the growth and survival of T. gondii. In the present study, B-cell and T-cell epitopes of TgCPC1 were predicted using DNAstar and the Immune Epitope Database. A TgCPC1 DNA vaccine was constructed, and its ability to induce protective immune responses against toxoplasmosis in BALB/c mice was evaluated in the presence or absence of the adjuvant ${\alpha}-GalCer$. As results, TgCPC1 DNA vaccine with or without adjuvant ${\alpha}-GalCer$ showed higher levels of IgG and IgG2a in the serum, as well as IL-2 and $IFN-{\gamma}$ in the spleen compared to controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). Upon challenge infection with tachyzoites of T. gondii (RH), $pCPC1/{\alpha}-GalCer$ immunized mice showed the longest survival among all the groups. Mice vaccinated with DNA vaccine without adjuvant (pCPC1) showed better protective immunity compared to other controls (PBS, pEGFP-C1, and ${\alpha}-GalCer$). These results indicate that a DNA vaccine encoding TgCPC1 is a potential vaccine candidate against toxoplasmosis.

Codelivery of IL-7 Augments Multigenic HCV DNA Vaccine-induced Antibody as well as Broad T Cell Responses in Cynomolgus Monkeys

  • Park, Su-Hyung;Song, Mi-Young;Nam, Hyo-Jung;Im, Se-Jin;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.198-205
    • /
    • 2010
  • Background: A crucial limitation of DNA vaccines is its weak immunogenicity, especially in terms of eliciting antibody responses in non-human primates or humans; therefore, it is essential to enhance immune responses to vaccination for the development of successful DNA vaccines for humans. Methods: Here, we approached this issue by evaluating interleukin-7 (IL-7) as a genetic adjuvant in cynomolgus monkeys immunized with multigenic HCV DNA vaccine. Results: Codelivery of human IL-7 (hIL-7)-encoding DNA appeared to increase DNA vaccine-induced antibody responses specific for HCV E2 protein, which plays a critical role in protecting from HCV infection. HCV-specific T cell responses were also significantly enhanced by codelivery of hIL-7 DNA. Interestingly, the augmentation of T cell responses by codelivery of hIL-7 DNA was shown to be due to the enhancement of both the breadth and magnitude of immune responses against dominant and subdominant epitopes. Conclusion: Taken together, these findings suggest that the hIL-7-expressing plasmid serves as a promising vaccine adjuvant capable of eliciting enhanced vaccine-induced antibody and broad T cell responses.

The immune-adjuvant effect and safety of recombinant CC chemokine 1 (rRbCC1) in rock bream, Oplegnathus fasciatus

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Hwang, Seong-Don;Kim, Eun-Gyeong;Park, Dae-Won;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.231-240
    • /
    • 2013
  • Adjuvants are immune enhancers that are often used in vaccination to augment the immune response of a vaccine, thereby enhancing the protective immunity against the targeted disease. In the present study, we used the recombinant protein, such as rRbCC1, this protein was produced from rock bream CC chemokine 1. To verify the adjuvant effects of this recombinant protein, the immune responses of rock bream to Streptococcus iniae (S. iniae) FKC vaccination, which alone or in combination with recombinant protein was analyzed and then also performed experimental challenge with live S. iniae. The result of serum agglutination titres was showed relatively low levels however, the efficacy of FKC vaccine still conferred protection against S. iniae. Moreover, the adverse effects result showed that no statistically significant difference was revealed between high concentration injected and non-injected fish groups, generally. The relative percent survival (RPS) of FKC + recombinant vaccination group was significantly higher than that of vaccinated group with FKC alone. After experimental challenge to the rock bream by injection with live bacteria (S. iniae), the FKC + rRbCC1 vaccination group was showed 87.0% RPS, however, the RPS of FKC alone vaccination was 68.2%. The results indicated that the recombinant protein as an adjuvant had a clear synergism to injection vaccine of rock bream.