• 제목/요약/키워드: utilization of slag

Search Result 122, Processing Time 0.028 seconds

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 송민섭;장재봉;김갑수;윤종기;김재환;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical of efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Song, Min-Seob;Jang, Jea-Bong;Kim, Gab-Su;Yoon, Jong-Kee;Kim, Jae-Hwan;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Fineness and Replacement Ratio of Blast-Furnace Slag (고로슬래그미분말의 분말도 및 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Na Chul-Sung;Lee Dong-Heck;Kim Jae-Hwan;Kim Won-Kee;Baik Yong-Kwan;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.565-568
    • /
    • 2004
  • Properties examination of concrete using blast-furnace slag instead of cement is necessary, so it is planed that: basic data for utilization and performance management of blast-furnace slag by means of cement replacement is presented with experimental comparison and investigation of engineering properties of concrete according to the replacement ratio and fineness of blast-furnace slag.

  • PDF

Evaluation of Fluidity and Compressive Strength of Mortar by Grading Variation of Ferro-Nickel Slag Sand (페로니켈 슬래그 잔골재의 입도 변화에 따른 모르타르의 유동성 및 압축강도 평가)

  • Kim, Do-Bin;Min, Sang-Hyun;Kim, Jeong-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.206-207
    • /
    • 2017
  • We investigated the fluidity and compressive strength properties of mortar by Grading Variation of Ferro-Nickel Slag Sand in order to improve the utilization of ferro-nickel which is the by-product produced by making stainless steel, in the construction industry.

  • PDF

A Study on the Utilization of Blast Furnace Slag(I) (Grain-Growth of Slag-Glass) (고노슬라그의 이용에 관한 연구(I) (슬라그유리의 결정성장))

  • Rhee, Jhun;Chi, Ung-Up;Han, Ki-Sung;Choi, Sang-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.3
    • /
    • pp.157-167
    • /
    • 1978
  • The batch compositions and physical properties of slag-ceramics were studied with respect to their formability from the molten state and conditions of nucleation and crystal growth treatment. The selected batch compositions for nucleation and growth studies were slag, 56%; silica sand, 28%; $Na_2O+MgO$, 8% and $TiO_2+$chromite, 8%. The optimum nucleation condition was the temperature of 75$0^{\circ}C$ with 6 hrs. holding time and the optimum growth condition was the temperature 975$^{\circ}C$ with zero holding time. The slag-ceramics prepared under the above conditions showed the best developed microtexture. The grown crystals were identified as diopside with the average grain size of 5.7$\mu\textrm{m}$, and the amount of crystal grown were about 53% by weight. The prepared specimens of slag-ceramics showed the microhardness, 793kg/$\textrm{mm}^2$; MOR, 1,050 kg/$\textrm{cm}^2$ and thermal expansion coefficient, $85{\div}10^{-7}$cm/cm/$^{\circ}C$($25^{\circ}C$~$700^{\circ}C$).

  • PDF

Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag (제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향)

  • Son, Minah;Kim, Gookhee;Han, Kunwoo;Lee, Min Woo;Lim, Jun Taek
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of $CO_2$ utilization. Principle, feature, and global and domestic development status of the mineral carbonation technology were discussed together with the overview of the production method and market of PCC. Mineral carbonation is known as stable and environmentally-friendly technology enabling economical treatment of industrials wastes. Typically, PCC is produced by the reaction of $CO_2$ with supernatant solution after Ca extraction from steel slag followed by the separation of solid and liquid. The development status of MC using steel slag is at the pilot stage (Slag2PCC at Aalto University), and there remains the process economics improvement for commercialization. Key technologies for the further development are efficient extraction of Ca ions from steel slag including impurities removal, valorization of PCC via shape and size control, usage development and value-addition of residual slag, and optimization of reaction conditions for continuous process setup, etc.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(II) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(II))

  • Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Hun-Ha;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1138-1142
    • /
    • 2002
  • Slag cement and supersulfated slag cement were fabricated by mixing blast furnace slag and ordinary portland cement and adapted to solidify/stabilize heavy metal contained hazardous waste sludge. In case of slag cement, it showed continuous increase of their compressive strengths, which is attributed to the formation of the C-S-H, ettringite and monosulfate with STS sludge. However, BF and COREX sludge has a different shape and composition. therefore, adequate compressive strength could not be achieved with this slag cement. In case of the mixture of the each sludge like the STS-BF or the STS-COREX, the compressive strength over the standard level for disposing the wastes could be obtained with slag cement. The supersulfated slag cement that contain accelerators was very effective in solidifying the COREX sludge, which was difficult to solidify using different cement and obtained high compressive strength only for 3 days.

A Study on the Utilization of Blast-Furnace Slag (II) (Slag-Ceramics with Natural Minerals) (고로슬라그의 이용에 관한 연구 (II) (천연원료를 이용한 Slag-Ceramics))

  • Chi, Ung-Up;Rhee, Jhun;Han, Ki-Suk;Lee, Jae-Rock
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.1
    • /
    • pp.3-12
    • /
    • 1981
  • A glass-ceramics based on blast-furnace slag, with some additives to the theoretical composition in order to control properties of mother glass and the heat treatment conditions, has been investigated. The raw materials in this study were blast-furnace slag, serpentine, feldspar and quartz as mother glass ingredients. Titanium dioxide and chromite were used as the nucleating agents. Batch compositions of the prepared glasses and ceraming conditions were found by trial and error method. The optimum conditions were confirmed by analyzing several measured physical properties such as density change during heat treatment, microhardness of slag-ceramics prepared, viscosity change of glass at heat treatment temperatures, nucleation density change, dilatometric properties, differential thermal analysis, identification of the grown crystal and crystal sizes. The batch composition feasible to prepare slag-ceramics was 40% of blast-furnace slag, 25% of serpentine, 18% of feldspar and 17% of silica sand. Three percent titanium dioxide and 1% chromite of the mother glass were added as nucleating agents. The ceraming conditions under which the slag-ceramics having considerably good properties can be developed found as: "The glass was heated at 75$0^{\circ}C$ for 2 hours for nucleation, and the temperature was raised up to 1, 00$0^{\circ}C$ with a rate of 0.75$^{\circ}C$/min for crystal growth.owth.

  • PDF