• Title/Summary/Keyword: utilization of Drone

Search Result 82, Processing Time 0.02 seconds

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Analysis of Dedicated Mission Software Architecture for Unmanned Vehicles for Public Mission (공공임무를 위한 무인이동체 탑재용 임무소프트웨어 구조 분석)

  • Park, Jong-Hong;Choi, Sungchan;Ahn, Il-Yeup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.435-440
    • /
    • 2020
  • The application of the unmanned vehicles in various fields has been attracting attention, and the development of a service utilizing unmanned vehicles has been proceeding. As the service market using the unmanned vehicles rapidly increases, the demand for the development of software for performing the mission with unmanned vehicles is increasing. In particular, as the demand for unmanned vehicle utilization services for public missions such as fire detection, mail delivery, and facility management increases, the importance of developing mission software for unmanned vehicle is increasing. To develop common mission software, architecture design should be made so that unmanned vehicle service provider can easily develop software using reusable libraries or functions through analysis commonly required by various public institutions. In this paper, we discuss the research trends of mission software for public mission unmanned vehicles. In addition, the architecture design of developing formal mission software is proposed. Finally, we propose a data transfer architecture between mission software and data platform.

Influence Analysis of Actual Fault Cases in Unmanned Vehicle Industry and Study on Fault Tolerant Technology (무인이동체 산업의 실제 고장사례에 대한 영향성 분석 및 고장대응기술 적용방안)

  • Kim, Yeji;Kim, Taegyun;Kim, Seungkeun;Kim, Youdan;Hwang, Inseong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.627-638
    • /
    • 2022
  • This paper discusses the utilization of fault-tolerant technology in the industry by analyzing the status of drone failures in the unmanned vehicle industry survey conducted in 2020. Based on the survey results of the domestic unmanned vehicle industry, we identify subsystems with high fault rates and high severity when faults occur. In addition, fault simulations of the identified subsystems are conducted to analyze the effect of the fault on the vehicles. After that, the fault diagnosis and fault compensation methods studied so far are reviewed, and research cases of the methods are examined. Moreover, the ways to apply it to actual fault cases in the unmanned vehicle industry are debated. Furthermore, based on the previous discussion, the fault-tolerant system is presented, and the consideration when designing the fault-tolerant system in the industry are studied.

Media big data analysis on technology trends to prevent wandering and missing of dementia patients in the community

  • Jung Won Kong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.257-266
    • /
    • 2023
  • The aim of this study is to use media big data to understand the characteristics and changes in technology that prevents wandering and missing for dementia patients as well as supports safe walking since 1990 until recently. BigKinds as a media big data was used to conduct an analysis in two stages. In the results, first, the media reports began to be reported in the early 2000s, and it increased after 2014. Second, regarding to the characteristics of changes in technology and device utilization, there has been a change to advanced technology that combines AI and IoT, focusing on GPS. Drone has recently increased in media report, however problems of personal information security need to be resolved. Third, technology development focused on location identification by police and guardians. Based on the results, technology development and community cooperation for dementia patient were discussed.

A Study on the Effective Military Use of Drones (드론의 효과적인 군사분야 활용에 관한 연구)

  • Lee, Young Uk
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.61-70
    • /
    • 2020
  • The unmanned aerial vehicle that emerged with the 4th Industrial Revolution attracts attention not only from Korea but also from around the world, and its utilization and market size are gradually expanding. For the first time, it was used for military purposes, but it is currently used for transportation, investigation, surveillance, and agriculture. China, along with the US and Europe, is emerging as a leader in the commercial unmanned aerial vehicle market, and Korea, which has the world's seventh-largest technology in related fields, is striving to promote various technology development policies and system improvement related to unmanned aerial vehicles. Military drones will revolutionize the means of war by using a means of war called an unmanned system based on theories such as network-oriented warfare and effect-oriented warfare. Mobile equipment, including drones, is greatly affected by environmental factors such as terrain and weather, as well as technological developments and interests in the field. Now, drones are being used actively in many fields, and especially in the military field, the use of advanced drones is expected to create a new defense environment and provide a new paradigm for war.

Evaluating of the Effectiveness of RTK Surveying Performance Based on Low-cost Multi-Channel GNSS Positioning Modules (다채널 저가 GNSS 측위 모듈기반 RTK 측량의 효용성 평가)

  • Kim, Chi-Hun;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.53-65
    • /
    • 2022
  • According to the advancement of the GNSS satellite positioning system, the module of hardware and operation software reflecting accuracy and economical efficiency is implemented in the user sector including the multi-channel GNSS receiver, the multi-frequency external antenna and the mobile app (App) base public positioning analysis software etc., and the multichannel GNSS RTK positioning of the active configuration method (DIY, Do it yourself) is possible according to the purpose of user. Especially, as the infrastructure of multi-GNSS satellite is expanded and the potential of expansion of utilization according to various modules is highlighted, interest in the utilization of multi-channel low-cost GNSS receiver module is gradually increasing. The purpose of this study is to review the multi-channel low-cost GNSS receivers that are appearing in the mass market in various forms and to analyze the utilization plan of the "address information facility investigation project" of the Ministry of Public Administration and Security by constructing the multi-channel low-cost GNSS positioning module based RTK survey system (hereinafter referred to as "multi-channel GNSS RTK module positioning system"). For this purpose, we constructed a low-cost "multi-channel GNSS RTK module positioning system" by combining related modules such as U-blox's F9P chipset, antenna, Ntrip transmission of GNSS observation data and RTK positioning analysis app through smartphone. Kinematic positioning was performed for circular trajectories, and static positioning was performed for address information facilities. The results of comparative analysis with the Static positioning performance of the geodetic receivers were obtained with 5 fixed points in the experimental site, and the good static surveying performance was obtained with the standard deviation of average ±1.2cm. In addition, the results of the test point for the outline of the circular structure in the orthogonal image composed of the drone image analysis and the Kinematic positioning trajectory of the low cost RTK GNSS receiver showed that the trajectory was very close to the standard deviation of average ±2.5cm. Especially, as a result of applying it to address information facilities, it was possible to verify the utility of spatial information construction at low cost compared to expensive commercial geodetic receivers, so it is expected that various utilization of "multi-channel GNSS RTK module positioning system"

A Study on Precision of 3D Spatial Model of a Highly Dense Urban Area based on Drone Images (드론영상 기반 고밀 도심지의 3차원 공간모형의 정밀도에 관한 연구)

  • Choi, Yeon Woo;Yoon, Hye Won;Choo, Mi Jin;Yoon, Dong Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • The 3D spatial model is an analysis framework for solving urban problems and is used in various fields such as urban planning, environment, land and housing management, and disaster simulation. The utilization of drones that can capture 3D images in a short time at a low cost is increasing for the construction of 3D spatial model. In terms of building a virtual city and utilizing simulation modules, high location accuracy of aerial survey and precision of 3D spatial model function as important factors, so a method to increase the accuracy has been proposed. This study analyzed location accuracy of aerial survey and precision of 3D spatial model by each condition of aerial survey for urban areas where buildings are densely located. We selected Daerim 2-dong, Yeongdeungpo-gu, Seoul as a target area and applied shooting angle, shooting altitude, and overlap rate as conditions for the aerial survey. In this study, we calculated the location accuracy of aerial survey by analyzing the difference between an actual survey value of CPs and a predicted value of 3D spatial Model. Also, We calculated the precision of 3D spatial Model by analyzing the difference between the position of Point cloud and the 3D spatial Model (3D Mesh). As a result of this study, the location accuracy tended to be high at a relatively high rate of overlap, but the higher the rate of overlap, the lower the precision of 3D spatial model and the higher the shooting angle, the higher precision. Also, there was no significant relationship with precision. In terms of baseline-height ratio, the precision tended to be improved as the baseline-height ratio increased.

An Evaluation of the Importance of Major Indicators for Measuring the Level of Spatial Informatization in Local Governments (지방정부의 공간정보화 수준 측정을 위한 주요 지표의 중요도 평가)

  • Kim, Yeon-Seong;Seo, Won-Chan;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.985-994
    • /
    • 2022
  • This study diagnoses the maturity level of local government's spatial information policy in the face of the digital transformation period. To this end, by using the stratification (AHP) analysis technique, for the spatial information expert group, the importance evaluation is performed along with the selection of measurement indicators of the level of spatial informatization. First, the current status and indicators in terms of spatial information policies of local governments are studied through theoretical considerations. In addition, by examining previous studies, differentiation from this study is presented. In this study, 3 indicators and 18 detailed items of spatial informatization level evaluation indicators could be selected. As a result of the evaluation, the overall importance ranking for the measurement index was 0.125 (12.5%) for the establishment and utilizations of GIS Systems provided by local governments, 0.109 (10.9%) for the quality management of basic spatial information, 0.107 (10.7%) for the establishment and utilization of its own spatial information. 0.073 (7.3%) for the collaboration and sharing within the institution, 0.071 (7.1%) for the operation of education and support system on spatial information, 0.065 (6.5%) for the securing a dedicated organization and professional human resources, and interest at the institutional level were derived in the order of 0.053 (5.3%). The results of this study are expected to be usefully utilized as basic data to evaluate the level of spatial information policies promoted by local governments. In addition, if the local government's spatial information policy is pursued centering on the major indicators derived from the study, it is expected that efficient policy operation will be possible.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Verification of Entertainment Utilization of UAS FC Data Using Machine Learning (머신러닝 기법을 이용한 무인항공기의 FC 데이터의 엔터테인먼트 드론 활용 검증)

  • Lee, Jae-Yong;Lee, Kwang-Jae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • Recently, drones are rapidly becoming common and expanding. There is a great need for diversity in whether drone flight data can be used as entertainment technology analysis data. In particular, it is necessary to check whether it is possible to analyze and utilize the flight and operation process of entertainment drones, which are developing through autonomous and intelligent methods, through data analysis and machine learning. In this paper, it was confirmed whether it can be used as a machine learning technology by using FC data in the evaluation of drones for entertainment. As a result, FC data from DJI and Parrot such as Mavic2 and Anafi were unable to analyze machine learning for entertainment. It is because data is collected at intervals of 0.1 second or more, so that it is impossible to find correlation with other data with GCS. On the other hand, it was found that machine learning technologies can be applied in the case of Fixhawk, which used an ARM processor and operates with the Nuttx OS. In the future, it is necessary to develop technologies capable of analyzing the characteristics of entertainment by dividing fixed-wing and rotary-wing flight information. For this, a model shoud be developed, and systematic big data collection and research should be conducted.