• 제목/요약/키워드: users' interestedness

검색결과 3건 처리시간 0.018초

공공기록관의 소셜미디어 이용 현황 및 이용자 관심도 분석: 국가기록원과 대통령기록관을 중심으로 (A Study on Social Media Usage of Government Archival Services and Users' Interestedness: Focused on "National Archives of Korea" and "Presidential Archives")

  • 최정원;강주연;박준형;오효정
    • 정보관리학회지
    • /
    • 제33권2호
    • /
    • pp.135-156
    • /
    • 2016
  • 최근 이용자 중심의 기록관리에 대한 중요도가 높아짐에 따라, 공공기록관에서도 소셜 네트워크 서비스(Social Network Service: 이하 SNS)를 통해 기존 방식인 단방향이 아닌 쌍방향 활동으로 이용자와 소통을 유도하여 이용자 중심 서비스를 시도하고 있다. 본 연구의 목적은 공공기록관의 소셜미디어 이용 현황을 분석하고 그에 대한 이용자들의 관심도를 파악하는데 있다. 이를 위해 본 연구에서는 국가기록원과 대통령기록관 트위터를 선정, 2010년부터 2016년 4월 15일까지의 공공기록관과 관련 트윗(tweet)들을 수집하였고, 계량분석과 소셜미디어 분석 방법(노출추이분석, 시계열분석)을 적용하였다. 공공기록관에서 자체적으로 게시한 트윗과 일반 사용자가 게시한 트윗 집합간의 차이점을 분석하고, 공공기록관에 대한 이용자 관심이슈와 시계열에 의한 사회적 이슈간의 상관관계를 파악하였으며, 이를 통해 효과적인 소셜미디어 환경에서의 공공기록관 서비스 활용 방안을 제시한다.

국내외 국립기록관의 트위터 운용 현황 분석 및 활성화 방안 (A Study on the Vitalization Strategy Based on Current Status Analysis of National Archives)

  • 강주연;김태영;최정원;오효정
    • 정보관리학회지
    • /
    • 제33권3호
    • /
    • pp.263-285
    • /
    • 2016
  • 요즘 커뮤니케이션 수단으로 가장 각광받고 있는 도구는 소셜네트워크서비스(Social Network Service, 이하 SNS)로, 이용자들의 접근성과 편의성을 증진시키는 가장 효과적인 서비스로 자리 잡았다. 본 연구에서는 가장 대표적인 SNS 서비스 중 자동수집이 가능한 서비스인 트위터(Twittter)를 선정, 국내외 국립기록관의 트위터 운용 현황을 비교 분석하고 그 특징을 파악함으로써 이용자들의 관심도를 향상시키기 위한 활성화 방안을 제언하고자 한다. 이를 위해 미국의 NARA를 비롯해 영국의 TNA, 호주의 NAA와 국내의 국가기록원의 트윗(tweet)을 수집하고 이에 대한 정보 유형 분석과 시계열 분석을 실시하였다. 정보 유형 분석은 국립기록관이 제공하는 정보가 이용자의 정보 요구에 부응하는가를 살펴보는데 목적이 있으며 시계열 분석은 시간의 추이에 따른 이용자의 반응 추이를 살펴보는데 그 목적이 있다. 각국의 국립기록관 트위터 운용의 비교분석을 통해 4가지의 특성을 도출하였으며 이를 바탕으로 우리나라 국가기록원의 트위터 활성화 방안을 제언하였다.

스트림 데이터 환경에서 배치 가중치를 이용하여 사용자 특성을 반영한 빈발항목 집합 탐사 (Discovering Frequent Itemsets Reflected User Characteristics Using Weighted Batch based on Data Stream)

  • 서복일;김재인;황부현
    • 한국콘텐츠학회논문지
    • /
    • 제11권1호
    • /
    • pp.56-64
    • /
    • 2011
  • 스트림데이터는 무한하고 연속적인 특성을 지니고 있기 때문에 전체 데이터를 기반으로 빈발 항목 집합을 탐사하는 것은 어렵다. 이 때문에 데이터의 특성과 사용자의 특성을 반영한 특수한 데이터마이닝 방법이 필요하다. 이 논문에서는 사용자가 최근에 발생한 데이터에 더 많은 관심이 있다는 특성을 반영하여 빈발 항목을 탐사하는 FIMWB 방법을 제안한다. FIMWB는 과거 데이터의 발생 시점과 현재 시점과의 시간 간격에 따라 가변적인 가중치를 배치에 부여하여 최신 데이터에 더 많은 관심과 중요성을 반영한다. FP-Digraph는 FIMWB를 통해 탐사된 빈발 항목으로 그래프를 구성하여 빈발 항목 집합을 탐사한다. 실험 결과로 FIMWB 방법이 불필요한 항목의 생성을 감소시키고 트리기반(FP-Tree)의 빈발 항목 집합 탐사에 비해 제안하는 FP-Digraph 방법이 스트림 데이터 환경에 더 적합함을 알 수 있다.