• Title/Summary/Keyword: used steel can

Search Result 2,482, Processing Time 0.031 seconds

An Application of Solenoid Eddy Current Sensor for Nondestructively Inspecting Deterioration of Overhead Transmission Lines due to Forest Fires (산불에 의한 가공송전선의 열화특성을 비파괴적으로 검출하기 위한 솔레노이드 와류센서의 응용)

  • Kim, Sung-Duck;Kim, Young-Dal;Jeong, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.404-415
    • /
    • 2000
  • This paper describes several performances and nondestructive inspection for deterioration due to forest fires in overhead transmission lines. After discussing corrosion mechanism such as atmospheric and galvanic corrosion for aged ACSR conductors and its detection for them are presented. Through impedance analysis of a solenoid coil, it is shown that the eddy current sensor may be available to inspect severe fault or local corrosion. As the solenoid coil changes its impedance when the test conductor is inserted into the coil, it can be possible to measure deterioration degree caused by forest fires. Tensile strength, extension rate and sensor impedance are tested for some samples degraded by artificial fire. As increasing blazed period to some extent, the strength of aluminum strand begins to be reduced remarkably, while galvanized steel strand holds the similar strength to the initial value, despite of appearing a little loss of zinc layer. In general, it is shown that the sensor impedance would be increased while the tension load of conductor is reduced and the extension rate is contrarily increased. Therefore, the sensor output could exhibit the changes of mechanical performances, and would be used to detect such deterioration caused by forest fire in ACSR conductors built on the ridge of mountains. Finally, it was verified that the solenoid coil could be applicable to obtain any crucial inform for serious deterioration due to forest fires.

  • PDF

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

Design and Fabrication of a Pilot Scale Continuous Kimchi Pasteurizer (Pilot Scale 연속식(連速式) 김치순간살균(瞬間殺菌) 장치(裝置)의 설계(設計) 및 제작(製作))

  • Kim, Kong-Hwan;Gil, Gwang-Hoon;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 1984
  • In order to study the feasibility of industrial application of Kimchi juice separation-pasteurization method, a pilot scale Kimchi pasteurizer was designed and fabricated. The apparatus consisted of five sections: Kimchi juice separation-mixing, holding, precooling and cooling sections. Stainless steel pipelengths required for the heat exchanging sections were determined based on an equation, $W{\;}C_p{\;}T{\;}={\;}U(2{\;}RL){\;}T_{1m}$. Overall heat transfer coefficients in preheating, holding, precooling and cooling sections were 875, 1398, 2036, and $288{\;}kcal/m^2h^{\circ}C$ at the flow rate of 4 l/min, respectively, and temperature profiles of each section were in good agreement with those predicted from design criteria. A preliminary test using Chinese radish Kimchi demonstrated that this method can effectively be used in commercial processing of kimchi.

  • PDF

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

An Analysis of Ship's Waiting Ratio in the Korean Seaports (국내 항만의 선박 대기율 실증 분석 연구)

  • Kim, Eun-Soo;Kim, Geun-Sub
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Port congestion has been recognized as one of the critical factors for port service competitiveness and port selection criteria. However, congestion ratio, the congestion index currently used by Korea, plays a very limited role in shipping companies' and shippers' selection of port and port authorities' decision making regarding port management and development. This is mainly due to the fact that this ratio is only calculated as the ratio of the number of vessels by each port. Therefore, this study aims to measure service level related to vessel entry and departure in Korea ports by evaluating waiting ratio(WR) according to terminals and vessel types. The results demonstrate that the waiting ratio of containerships and non-containerships is less than 4% and 15% respectively, which satisfies the reasonable level suggested by the UNCTAD and OECD. Port of Pohang is revealed to have the highest WR of 57% and among the terminals, No. 1 Terminal of the Shinhang area has the highest WR. In terms of ship types, WR of Steel Product Carrier is highest, followed by General Cargo Ship and Bulk Carrier at the Pohang Shinhang area. In addition to WR, berth occupancy ratio as well as the number and time of waiting vessels can be utilized to evaluate service level by ports and terminals from port users' perspective, and furthermore, to improve the port management and development policy for port managers or authorities.

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

Study of Bio-absorbability and Bio-compatibility of Poly-L-lactic-acid Implant in Dogs (개에서 Poly-L-lactic-acid 이식물의 생분해성과 생체적합성에 관한 연구)

  • Park, Po-Young;Kim, Young-Ki;Bahk, Jong-Yoon;Park, Joung-Man;Koh, Phil-Ok;Chang, Hong-Hee;Lee, Hee-Chun;Lee, Hyo-Jong;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.182-191
    • /
    • 2007
  • Bioabsorbable devices have been utilized and experimented in many aspects of orthopaedic surgery. Depending upon their constituent polymers, these materials can be tailored to provide sufficient rigidity to allow bone healing, retain mechanical strength for certain period of time, and then eventually begin to undergo degradation. The objective of this study was to estimate extent in which Poly-L-latic acid (PLLA) implants had bioabsorbability and biocompatibility with bone and soft tissue in dogs and also to develop bioabsorbable, biocompatible materials with the appropriate strength and degradation characteristics to allow for regular clinical use for treating orthopedic problems in humans as well as animals. Eighteen dogs were used as experimental animals and were inserted two types of PLLA implants. PLLA rods were inserted into subcutaneous tissue of back or the abdomen wall. And the rods were tested for material properties including viscosity, molecular weight, melting point, melting temperature, crystallinity, flexural strength, and flexural modulus over time. PLLA screws were inserted through cortical bone into bone marrow in the femur of the dogs and stainless steel screw was inserted in the same femur. Radiographs were taken after surgery to observe locations of screw. Histological variations including cortical bone response, muscular response, bone marrow response were analyzed over the time for 62weeks. The physical properties of PLLA rods had delicate balances between mechanical, thermal and viscoelastic factors. PLLA screws did not induce any harmful effects and clinical complications on bone and soft tissue for degradation period. These results suggest that PLLA implants could be suitable for clinical use.

Fiber Optic Bragg Grating Sensor for Crack Growth Detection of Structures (구조물의 균열 진전 탐지를 위한 광섬유 브래그 격자 센서)

  • Kwon, Il-Bum;Seo, Dae-Cheol;Kim, Chi-Yeop;Yoon, Dong-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.299-304
    • /
    • 2007
  • There are to be some cracks on the material degradation part or the stress concentration parts of the main members, which carry on over-loads, of structures. Because these cracks can be used to evaluate the structural health status, it is important to monitor the crack growth for maintaining the structural safety. In this study, the fiber Bragg grating sensor with a drop ball was developed as a sensor for crack growth detection of an existing crack. The crack growth detection sensor was constructed with three parts: a probe part, a wavelength controling light source and receiver part, and an impact part. The probe part was just formed with a fiber Bragg grating optical fiber The wavelength controling light source part was composed of a current supplying circuit, a DFB laser diode, and a TEC controling circuit for wavelength control. Also, the impact part was just implemented by dropping a steel ball. The performance of this sensor was confirmed by the experiments of the crack detection with an aluminum plate having one existing crack. According to these experiments, the difference of the sensor signal outputs was correlated with the crack length. So, it was confirmed that this sensor could be applied to monitor the crack growth.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.