• 제목/요약/키워드: use for learning

Search Result 4,739, Processing Time 0.032 seconds

A Korean Language Stemmer based on Unsupervised Learning (자율 학습에 의한 실질 형태소와 형식 형태소의 분리)

  • Jo, Se-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.675-684
    • /
    • 2001
  • This paper describes a method for stemming of Korean language by using unsupervised learning from raw corpus. This technique does not require a lexicon or any language-specific knowledge. Since we use unsupervised learning, the time and effort required for learning is negligible. Unlike heuristic approaches that are theoretically ungrounded, this method is based on widely accepted statistical methods, and therefore can be easily extended. The method is currently applied only to Korean language, but it can easily be adapted to other agglutinative languages, since it is not language-dependent.

  • PDF

An effect of Content-centered Class Using Movies in Learning Practical Expressions (영화를 활용한 내용 중심 수업이 실용적 영어표현 습득에 미치는 영향)

  • Kim, Hye Jeong
    • Cross-Cultural Studies
    • /
    • v.39
    • /
    • pp.407-432
    • /
    • 2015
  • This study focuses on the flow of story and content or related context when using movies as learning materials in a class. A great advantage of using movies is that they have a consistent story and detailed content development. Most teachers, however, tend to concentrate on practical expressions totally unrelated to the story or context of the movie they are using. This way might be efficient in the short run but it is certain that the expressions are unlikely to be retained in long-term memory. This study examines how a story-centered class influences learning of practical expressions and how efficient this approach to learning is. Learning and teaching with focus only on the expressions in a movie shades the meaning of the use of the movie a little. In this study the movie, Cars 2, was used in a course of general education with 150 students enrolled. Various group activities were suggested to immerse students into the story and contents of Cars 2. It was found that a story-centered class is helpful for students to acquire practical expressions and that students' satisfaction level with the class was high.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Augmented Reality (AR)-Based Smartphone Application as Student Learning Media for Javanese Wedding Make Up in Central Java

  • Ihsani, A.N.N.;Sukardi, Sukardi;Soenarto, Soenarto;Krisnawati, M.;Agustin, E.W.;Pribadi, F.S.
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.248-256
    • /
    • 2021
  • The purpose of this study was to introduce an application as a learning medium that can be used by students to prepare Solo bridal paes. This application can be used by make-up beginners who are learning about Solo bridal paes. This study used a quasi-experimental method with a randomized pretest-posttest control group. The paes application can be used as a medium in Solo bridal makeup learning, because it is highly effective in helping students prepare Solo bridal paes. This application is also considerably practical because it can be installed on smartphones. Experimental results revealed a difference between the control and experimental classes. Students in the experimental class could prepare paes neatly, and their shapes were proportional to the face of the model. The use of augmented reality as a medium to teach Solo bridal makeup, especially for making paes, is an innovation in the world of education. This application can help students make paes.

Video Learning Enhances Financial Literacy: A Systematic Review Analysis of the Impact on Video Content Distribution

  • Yin Yin KHOO;Mohamad Rohieszan RAMDAN;Rohaila YUSOF;Chooi Yi WEI
    • Journal of Distribution Science
    • /
    • v.21 no.9
    • /
    • pp.43-53
    • /
    • 2023
  • Purpose: This study aims to examine the demographic similarities and differences in objectives, methodology, and findings of previous studies in the context of gaining financial literacy using videos. This study employs a systematic review design. Research design, data and methodology: Based on the content analysis method, 15 articles were chosen from Scopus and Science Direct during 2015-2020. After formulating the research questions, the paper identification process, screening, eligibility, and quality appraisal are discussed in the methodology. The keywords for the advanced search included "Financial literacy," "Financial Education," and "Video". Results: The results of this study indicate the effectiveness of learning financial literacy using videos. Significant results were obtained when students interacted with the video content distribution. The findings of this study provide an overview and lead to a better understanding of the use of video in financial literacy. Conclusions: This study is important as a guide for educators in future research and practice planning. A systematic review on this topic is the research gap. Video learning was active learning that involved student-centered activities that help students engage with financial literacy. By conducting a systematic review, researchers and readers may also understand how extending an individual's financial literacy may change after financial education.

Computer Architecture Execution Time Optimization Using Swarm in Machine Learning

  • Sarah AlBarakati;Sally AlQarni;Rehab K. Qarout;Kaouther Laabidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.49-56
    • /
    • 2023
  • Computer architecture serves as a link between application requirements and underlying technology capabilities such as technical, mathematical, medical, and business applications' computational and storage demands are constantly increasing. Machine learning these days grown and used in many fields and it performed better than traditional computing in applications that need to be implemented by using mathematical algorithms. A mathematical algorithm requires more extensive and quicker calculations, higher computer architecture specification, and takes longer execution time. Therefore, there is a need to improve the use of computer hardware such as CPU, memory, etc. optimization has a main role to reduce the execution time and improve the utilization of computer recourses. And for the importance of execution time in implementing machine learning supervised module linear regression, in this paper we focus on optimizing machine learning algorithms, for this purpose we write a (Diabetes prediction program) and applying on it a Practical Swarm Optimization (PSO) to reduce the execution time and improve the utilization of computer resources. Finally, a massive improvement in execution time were observed.

Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology (인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석)

  • Cha Jooho;Ryu Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

Modeling of Self-Constructed Clustering and Performance Evaluation (자기-구성 클러스터링의 모델링 및 성능평가)

  • Ryu Jeong woong;Kim Sung Suk;Song Chang kyu;Kim Sung Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.490-496
    • /
    • 2005
  • In this paper, we propose a self-constructed clustering algorithm based on inference information of the fuzzy model. This method makes it possible to automatically detect and optimize the number of cluster and parameters by using input-output data. The propose method improves the performance of clustering by extended supervised learning technique. This technique uses the output information as well as input characteristics. For effect the similarity measure in clustering, we use the TSK fuzzy model to sent the information of output. In the conceptually, we design a learning method that use to feedback the information of output to the clustering since proposed algorithm perform to separate each classes in input data space. We show effectiveness of proposed method using simulation than previous ones

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Development of a Deep Learning Prediction Model to Recognize Dangerous Situations in a Gas-use Environment (가스 사용 환경에서의 위험 상황 인지를 위한 딥러닝 예측모델 개발)

  • Kang, Byung Jun;Cho, Hyun-Chan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.132-135
    • /
    • 2022
  • Recently, with the development of IoT communication technology, products and services that detect and inform the surrounding environment under the name of smart plugs are being developed. In particular, in order to prepare for fire or gas leakage accidents, products that automatically close and warn when abnormal symptoms occur are used. Most of them use methods of collecting, analyzing, and processing information through networks. However, there is a disadvantage that it cannot be used when the network is temporarily in a failed state. In this paper, sensor information was analyzed using deep learning, and a model that can predict abnormal symptoms was learned in advance and applied to MCU. The performance of each model was evaluated by developing firmware that can judge and process on its own regardless of network and applying a predictive model to the MCU after 3 to 120 seconds.