Suk Ju Ko;Ji Woo Kim;Ji Su Woo;Sang Jeen Hong;Garam Kim
Journal of the Semiconductor & Display Technology
/
v.22
no.2
/
pp.81-86
/
2023
Recently, there has been an increased demand for light-emitting diode (LED) due to the growing emphasis on environmental protection. However, the use of GaN-based sapphire in LED manufacturing leads to the generation of defects, such as dislocations caused by lattice mismatch, which ultimately reduces the luminous efficiency of LEDs. Moreover, most inspections for LED semiconductors focus on evaluating the luminous efficiency after packaging. To address these challenges, this paper aims to detect defects at the wafer stage, which could potentially improve the manufacturing process and reduce costs. To achieve this, image processing and deep learning-based defect detection techniques for Sapphire Epi-Wafer used in Green LED manufacturing were developed and compared. Through performance evaluation of each algorithm, it was found that the deep learning approach outperformed the image processing approach in terms of detection accuracy and efficiency.
Journal of the Korean Society of Industry Convergence
/
v.27
no.1
/
pp.183-193
/
2024
Recurrent Neural Network technology that learns past patterns and predicts future patterns using technology for recognizing and classifying objects is being applied to various industries, economies, and languages. And research for practical use is making a lot of progress. However, research on the application of Recurrent Neural Networks for evaluating and predicting the safety of mechanical structures is insufficient. Accurate detection of external load applied to the outside is required to evaluate the safety of mechanical structures. Learning of Recurrent Neural Networks for this requires a large amount of load data. This study applied the Gated Recurrent Unit technique to examine the possibility of load learning and investigated the possibility of applying a stacked Auto Encoder as a way to secure load data. In addition, the usefulness of learning mechanical loads was analyzed with the Gated Recurrent Unit technique, and the basic setting of related functions and parameters was proposed to secure accuracy in the recognition and prediction of loads.
Journal of the Korean Data and Information Science Society
/
v.7
no.2
/
pp.203-210
/
1996
A linear neural unit with a modified anti-Hebbian learning rule has been shown to be able to optimally fit curves, surfaces, and hypersurfaces by adaptively extracting the minor component of the input data set. In this paper, we study how to use the robust version of this neural fitting method for linear regression analysis. Furthermore, we compare this method with other methods when data set is contaminated by outliers.
In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...
The purpose of this study was to develop, through the integration of instructional theory, a Courseware and to investigate the effectiveness of a web-based computer assisted instruction(WBI) program for preventing drug abuse, a serious problem for youth problem. During the first stage of this study done "Drug Abuse Prevention" Courseware was developed based on, Gagn & Brigg's instructional design theory, Keller's ARCS theory and the CAI model of Hannafin & Peck. For the second stage, the courseware was used to provide education for students adolescents in drug abuse prevention. This study used an quasi-experimental, one-group pretest-posttest design with a convenience sample of 36 male high school students who were at one high school located in Seoul. Data were collected using self-reported questionnaires which included a learning achievement tool, the Keller's IMMS (Instructional Material Motivation Survey), on attitudes to drug use, and on responses to the WBI instruction. Prior to the experiment, the "drug abuse prevention" learning method and the procedures of the study were explained to the students, and then the learning achievement of the subjects was measured as a pretest. The students were then given 2 weeks WBI utilizing the courseware. A post-test which included the pre-test learning achievement questionnaire and a survey of learning motivation and attitudes toward drug were given two weeks after the education was completed. The data analysis was done using SPSS/PC. Paired t-test was used to analyze the differences between the pre-test and post-test scores for learning achievement. The results of the analysis are as follows: There were significant differences in learning achievement between the pre-test and post-test(t=-18.62, p=0.000). The hypothesis, that learning achievement will be higher, after the class has used the courseware, than before was supported. The scores for learning motivation and attitudes toward drugs were also higher than the results of existing studies. In conclusion, this study suggests that WBI is an effective learning method in the prevention of drug abuse for adolescents as it can be used for self-learning and repeated learning as assisted instruction. Recommendation would be given that further research needs to be develped in the courseware by cognitive learning style and by multimedia courseware and virtual reality system.
The activities of teaching and learning are to try to reach the lesson object most closely in many ways. Considering that the lesson objects are to get the principle or law of a concept, to acquire the mathematical function, to master it through repeated exercises and to solve mathematical problems, we need many ways to reach such objects. Among the many ways, we can first think of one: the students will learn with curiosity and according to their own ability or advancing level in learning when teachers study and prepare necessary contents enough in advance by using computers, showing the right program to learners' needs. For example, defining definite integral by measuration by parts will help understand measuration by parts well and know the meaning of definite integral correctly, In teaching and learning by the use of this program, the educational effects are expected as follows. 1. It is thought that this program will stimulate the desire for and interest in learning because it used animation and acoustic effect. And voluntary and positive thinking activity will be shown. 2. It is expected that the conviction of formulas will be got and the concept of definite integral will be remembered firmly by showing how to measure the width of circle with the use of measuration by parts in various other ways instead of the ways used at present. 3. It is expected that students will feel the pleasure of mathematics in life when they recognize mathematical facts scattered really in our life rather than mathematical difficulties. 4. It is expected that the repeated review of programs already designed will remove the fear of incomplete parts and help review again. 5. It is certain that positive attitude in life will be formed as teacher-centered class is changed into learner-centered class and unwilling study is changed into self-oriented study. However, I think this program is insufficient for humanbeing-centered education given directly in contact with students on the ground of the variety in mathematical education and applications in many ways. And mechanically inhuman computers leave some solutions to be desired
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.3
/
pp.117-127
/
1995
In this paper, we suggest a motion analysis method using ART-I1 competitive learning neural network
and fuzzy reasoning by matching the same objects through the consecutive image sequence. we use the
size and mean intensity of the region obtained from image segmentation for the region matching by the region
and use a ART-I1 competitive learning neural network wh~ch has a learning ability to reflect the topology
of the input patterns in order to select characteristic points to describe the shape of a region. Motion
vectors for each regions are obtained by matching selected characteristic points. However, the two
dimensional image, the projection of the the three dimensional real world, produces fuzziness in motion
analysis due to its incompleteness by nature and the error from image segmentation used for extracting information
about objects. Therefore, the belief degrees for each regions are calculated using fuzzy reasoning
to l-nanipulate uncertainty in motion estimation.
Journal of Elementary Mathematics Education in Korea
/
v.11
no.1
/
pp.81-98
/
2007
In order to help students learn geometric concepts in mathematics in an easy and interesting way, the present study restructured the textbook so that it utilizes GSP based on van Hiele's theory. In addition, we purposed to examine how effective the restructured textbook is in enhancing students' van Hiele level and to lay a base for the active use of GSP in learning figures in elementary school. In conclusion, the results of this study is expected to solve problems in the structure of the current textbook such as the violation of continuity in van Hiele's theory and inconsistency between the level of textbook contents and students' level through the restructuring of the textbook using GSP and provide helps for effective figure learning. In addition, this research is expected to be an opportunity for the active use of GSP in teaching figures in elementary school.
International Journal of Computer Science & Network Security
/
v.24
no.3
/
pp.59-70
/
2024
Background: The COVID-19 pandemic (the form of coronaviruses) developed at the end of 2019 and spread rapidly to almost every corner of the world. It has infected around 25,334,339 of the world population by the end of September 1, 2020 [1] . It has been spreading ever since, and the peak specific to every country has been rising and falling and does not seem to be over yet. Currently, the conventional RT-PCR testing is required to detect COVID-19, but the alternative method for data archiving purposes is certainly another choice for public departments to make. Researchers are trying to use medical images such as X-ray and Computed Tomography (CT) to easily diagnose the virus with the aid of Artificial Intelligence (AI)-based software. Method: This review paper provides an investigation of a newly emerging machine-learning method used to detect COVID-19 from X-ray images instead of using other methods of tests performed by medical experts. The facilities of computer vision enable us to develop an automated model that has clinical abilities of early detection of the disease. We have explored the researchers' focus on the modalities, images of datasets for use by the machine learning methods, and output metrics used to test the research in this field. Finally, the paper concludes by referring to the key problems posed by identifying COVID-19 using machine learning and future work studies. Result: This review's findings can be useful for public and private sectors to utilize the X-ray images and deployment of resources before the pandemic can reach its peaks, enabling the healthcare system with cushion time to bear the impact of the unfavorable circumstances of the pandemic is sure to cause
In this study, the basic motor control system had been investigated. The Discrete-Time Feedback Error Learning (DTFEL) method is used to control this system. This method is anologous to the original continuous-time version Feedback Error Learning(FEL) control which is proposed as a control model of cerebellum in the field of computational neuroscience. The DTFEL controller consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such the tracking perfect, the adaptive law is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The PD control theory is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.