This paper presents that TD method is applied to the human adaptive devices for smart home with context awareness (or recognition) technique. For smart home, the very important problem is how the appliances (or devices) can adapt to user. Since there are many humans to manage home appliances (or devices), managing the appliances automatically is difficult. Moreover, making the users be satisfied by the automatically managed devices is much more difficult. In order to do so, we can use several methods, fuzzy controller, neural network, reinforcement learning, etc. Though the some methods could be used, in this case (in dynamic environment), reinforcement learning is appropriate. Among some reinforcement learning methods, we select the Temporal Difference learning method as a core algorithm for adapting the devices to user. Since this paper assumes the environment is a smart home, we simply explained about the context awareness. Also, we treated with the TD method briefly and implement an example by VC++. Thereafter, we dealt with how the devices can be applied to this problem.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.7
no.4
/
pp.82-95
/
2008
As society has changed to being more knowledge-based, it is necessary that change of paradigm is incorporated into engineering education and the education goals and the assessment method of educational outcomes is developed to promptly meet the needs of the times. A purpose of this study is to measure learning outcomes in coursework of engineering college every semester, which ultimately provides to validate program outcomes. We looked into teaching-learning style of course in the engineering college and analyzed its grade method and tool. By use of a survey, we derived a reasonable method to measure for the learning outcomes in course and presented tools for course-embedded assessment to measure that learning outcomes had been tied to their objectives. These tools are effective to determine that program outcomes and education goals have been achieved, ultimately. In addition, it will help that instruction builds a loop system for better.
We propose a neural network solver for an inverse problem. The problem is that input data with complete teaching include defects and predict the defect value. The solver is constructed of a three layer neural network whose learning method is combined from BP and reconstruction learning. The input data for the defects are unknown; therefore, the circulation of an arithmetic progression replaces them; rightly, the learning procedure is not converged for the circulation data vut for the normal data. The learning is quitted after such a learning status id kept. Then, we search a minimum of the differences between teaching data and output of the circulation. Then, we search a minimum of the ...
IEMEK Journal of Embedded Systems and Applications
/
v.16
no.5
/
pp.215-223
/
2021
3D data can be categorized into two parts : Euclidean data and non-Euclidean data. In general, 3D data exists in the form of non-Euclidean data. Due to irregularities in non-Euclidean data such as mesh and point cloud, early 3D deep learning studies transformed these data into regular forms of Euclidean data to utilize them. This approach, however, cannot use memory efficiently and causes loses of essential information on objects. Thus, various approaches that can directly apply deep learning architecture to non-Euclidean 3D data have emerged. In this survey, we introduce various deep learning methods for mesh and point cloud data. After analyzing the operating principles of these methods designed for irregular data, we compare the performance of existing methods for shape classification and segmentation tasks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.9
/
pp.2942-2960
/
2022
The core of cognitive radio is the problem concerning intelligent decision-making for communication parameters, the objective of which is to find the most appropriate parameter configuration to optimize transmission performance. The current algorithms have the disadvantages of high dependence on prior knowledge, large amount of calculation, and high complexity. We propose a new decision-making model by making full use of the interactivity of reinforcement learning (RL) and applying the Q-learning algorithm. By simplifying the decision-making process, we avoid large-scale RL, reduce complexity and improve timeliness. The proposed model is able to find the optimal waveform parameter configuration for the communication system in complex channels without prior knowledge. Moreover, this model is more flexible than previous decision-making models. The simulation results demonstrate the effectiveness of our model. The model not only exhibits better decision-making performance in the AWGN channels than the traditional method, but also make reasonable decisions in the fading channels.
International journal of advanced smart convergence
/
v.8
no.4
/
pp.68-74
/
2019
Along with the deeper architecture in the deep learning approaches, the need for the data becomes very big. In the real problem, to get huge data in some disciplines is very costly. Therefore, learning on limited data in the recent years turns to be a very appealing area. Meta-learning offers a new perspective to learn a model with this limitation. A state-of-the-art model that is made using a meta-learning framework, Meta-SGD, is proposed with a key idea of learning a hyperparameter or a learning rate of the fast adaptation stage in the outer update. However, this learning rate usually is set to be very small. In consequence, the objective function of SGD will give a little improvement to our weight parameters. In other words, the prior is being a key value of getting a good adaptation. As a goal of meta-learning approaches, learning using a single gradient step in the inner update may lead to a bad performance. Especially if the prior that we use is far from the expected one, or it works in the opposite way that it is very effective to adapt the model. By this reason, we propose to add a weight term to decrease, or increase in some conditions, the effect of this prior. The experiment on few-shot learning shows that emphasizing or weakening the prior can give better performance than using its original value.
In this paper we analyze whether we can use the mobile phone having been highly distributed into young generation as a device for the u-learning in Korean public education. For this purpose we deal with the technical maturity in three axes. Firstly, we examine the authoring nature of mobile internet-based contents such as both text and motion picture for the contents developers in the public education. As a research result the authoring of text has almost no difficulty, but that of the motion picture shows some problems. Secondly, we deal with whether u-learners can easily get and use u-contents on both mobile phone and PC respectively. After analysing this factor, we found that the downloading of motion picture contents into mobile phone is very limited. Therfore we talk about the usability and problem of various PC Sync tools and propose their standardization. Finally, the needs of the introduction of the ubiquitous SCORM which could enable to reuse u-contents among different Korean telco’s mobile phones are discussed. Here we describe some functionality of both ubiquitous SCORM and u-LMS. Our study looks like almost the first work examining the technological maturity for the introduction of u-learning with mobile phone in Korean public education and it could be used as a reference for the study of any other wireless telecommunication-based u-learning other than mobile telecommunication.
Dae-Kug Lee;Seok-Ho Yoon;Jae-Hyeok Kwak;Choong-Ho Cho;Dong-Hoon Lee
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.4
/
pp.1123-1146
/
2023
In South Korea, there have been many studies on efficient building-energy management using renewable energy facilities in single zero-energy houses or buildings. However, such management was limited due to spatial and economic problems. To realize a smart zero-energy city, studying efficient energy integration for the entire city, not just for a single house or building, is necessary. Therefore, this study was conducted in the eco-friendly energy town of Chungbuk Innovation City. Chungbuk successfully realized energy independence by converging new and renewable energy facilities for the first time in South Korea. This study analyzes energy data collected from public buildings in that town every minute for a year. We propose a smart city building-energy management model based on the results that combine various renewable energy sources with grid power. Supervised learning can determine when it is best to sell surplus electricity, or unsupervised learning can be used if there is a particular pattern or rule for energy use. However, it is more appropriate to use reinforcement learning to maximize rewards in an environment with numerous variables that change every moment. Therefore, we propose a power distribution algorithm based on reinforcement learning that considers the sales of Energy Storage System power from surplus renewable energy. Finally, we confirm through economic analysis that a 10% saving is possible from this efficiency.
This study, based on literature review and theoretical discussion, reinterprets the learning environment instruments from cultural perspectives and suggests the applicability of learning environment instruments for understanding science classroom cultures. To do this, the existing learning environment instruments are first investigated and compared in terms of their features and utilizations appeared in previous studies. The learning environment instruments are then reinterpreted in the light of culture. Finally, we suggest the possibilities to use the learning environment instruments to understand science classroom cultures. The results of this study can be summarized as follows. First, the learning environment instruments, by interpreting them culturally, could be interpreted in cultural ways and used as the alternative ways to explore science classroom cultures. Second, the learning environment instruments, such as WIHIC and CLEQ, could be interpreted both along the dimension of phenomena in classrooms and the dimension of students' psychology in order to investigate science classroom cultures. Third, the instrument items could be interpreted culturally in different ways according to the description types of instrument items. Thus, when learning environment instruments are used in culture research, the description types should be sufficiently taken into account. Based on the results of this study, educational implications are discussed in terms of exploring classroom cultures and of culture research.
In this paper, we designed and proposed framework of extended user model to support student tailored learning in ubiquitous environment. For the purpose, existents model that is domain model, user model, adaptation model and interaction model connected to LMS(Learning Management System) and LCMS(Learning Contents Management System). Students information management process that is extended user model is in between LMS and adaptive learning system. And the process connected u-LMS to use u-learning. u-LMS and u-LCMS could support the learning contents through exchange the contents according to connect and request from the students.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.