• Title/Summary/Keyword: use for learning

Search Result 4,737, Processing Time 0.037 seconds

A Comparison of Mathematically Gifted and Non-gifted Elementary Fifth Grade Students Based on Probability Judgments (초등학교 5학년 수학영재와 일반아의 확률판단 비교)

  • Choi, Byoung-Hoon;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-199
    • /
    • 2007
  • The purpose of this study was to discover differences between mathematically gifted students (MGS) and non-gifted students (NGS) when making probability judgments. For this purpose, the following research questions were selected: 1. How do MGS differ from NGS when making probability judgments(answer correctness, answer confidence)? 2. When tackling probability problems, what effect do differences in probability judgment factors have? To solve these research questions, this study employed a survey and interview type investigation. A probability test program was developed to investigate the first research question, and the second research question was addressed by interviews regarding the Program. Analysis of collected data revealed the following results. First, both MGS and NGS justified their answers using six probability judgment factors: mathematical knowledge, use of logical reasoning, experience, phenomenon of chance, intuition, and problem understanding ability. Second, MGS produced more correct answers than NGS, and MGS also had higher confidence that answers were right. Third, in case of MGS, mathematical knowledge and logical reasoning usage were the main factors of probability judgment, but the main factors for NGS were use of logical reasoning, phenomenon of chance and intuition. From findings the following conclusions were obtained. First, MGS employ different factors from NGS when making probability judgments. This suggests that MGS may be more intellectual than NGS, because MGS could easily adopt probability subject matter, something not learnt until later in school, into their mathematical schemata. Second, probability learning could be taught earlier than the current elementary curriculum requires. Lastly, NGS need reassurance from educators that they can understand and accumulate mathematical reasoning.

  • PDF

Characteristics of Pre-service Teachers' PCK in the Activities of Content Representation of Boiling Point Elevation (끓는점 오름에 대한 내용표상화(Content Representation) 활동에서 나타난 예비교사의 PCK 특징)

  • Lee, Young Min;Hur, Chinhyu
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1385-1402
    • /
    • 2013
  • This study analyzes pre-service teachers' PCK dealing with visualization of the contents related to boiling point elevation and teaching methods in mock-lessons. As a result of analyzing pre-service teachers' knowledge based on PCK factors, most of the pre-service teachers accentuated on understanding boiling point elevation conceptually, whereas some of the others inclined to make students understand boiling point elevation in a scientific way, let the kids use numerical formulas to describe the concept, and motivate them to learn through the examples in real life. The pre-service teachers represented majority of the important facts of boiling point elevation as the knowledge required to understand things conceptually. However, they did not focus on improving the scientific thinking and inquiring levels of the students. Also, the pre-service teachers tended to teach at the level and order of the textbook. In some other cases, they considered the vocabularies and materials in the textbook (which could have been highlighted in the editing sequence) as the main topic to learn, or regarded the goal as giving students the ability to solve exercises in the textbook. It turned out that the pre-service teachers had a low level of knowledge of their students. It is recommended that they should make use of the materials given (such as data related to the misconception of students) during the training session. The knowledge of teaching and evaluating students was described superficially by the pre-service teachers; they merely mentioned the applications of models, such as the cyclic model and discovery learning, rather than thinking of a method related to the goals, or listed general assessment methods.

Influence of Democracy on Social Policy : The Case of Defective Democracy in Korea (민주주의가 사회복지정책에 미치는 영향 : 한국의 결함 있는 민주주의를 중심으로)

  • Lee, Shin-Yong
    • Korean Journal of Social Welfare
    • /
    • v.59 no.4
    • /
    • pp.137-162
    • /
    • 2007
  • In democracy basic rights such as political equality and participation through elections have been respected, opportunities of corporation and opposition have been guaranteed, and ability of self-learning and self-correction have been developed. These positive factors give preconditions for the welfare development in the democratic state. Because in this state adults get the suffrage and the open competition for official positions induces political parties use social policies as means to win the election. That is to say, political parties have an incentive to use various social policies to win the election. Democracy, therefore, has affinity with social policy. The affinity between democracy and social policy can be found also in Korea which was democratized in 1987. But, in Korea, the positive relationship between democracy and social policy is very weak due to the problem of constitutional structures. Korean Parliament usually enacts abstract social act and delegates the right to fill concrete contents of the social acts to the executive. Delegation itself has no problem, but excessive delegation is a problem since the executive can overuse its discretion as sacrificing the social rights of the citizen. In addition social consensus could not be achieved in this constitutional structures, which are a obstacle to establishing a political process in the Parliament to promote the welfare development through party competition. Excessive delegation should be reduced, and the Parliament should fill concrete contents of the social acts as exercising its legislative power more. Then a mechanism of welfare development can be launched in Korea.

  • PDF

Evil-Twin Detection Scheme Using SVM with Multi-Factors (다중 요소를 가지는 SVM을 이용한 이블 트윈 탐지 방법)

  • Kang, SungBae;Nyang, DaeHun;Lee, KyungHee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.334-348
    • /
    • 2015
  • Widespread use of smart devices accompanies increase of use of access point (AP), which enables the connection to the wireless network. If the appropriate security is not served when a user tries to connect the wireless network through an AP, various security problems can arise due to the rogue APs. In this paper, we are going to examine the threat by evil-twin, which is a kind of rogue APs. Most of recent researches for detecting rogue APs utilize the measured time difference, such as round trip time (RTT), between the evil-twin and authorized APs. These methods, however, suffer from the low detection rate in the network congestion. Due to these reasons, in this paper, we suggest a new factor, packet inter-arrival time (PIAT), in order to detect evil-twins. By using both RTT and PIAT as the learning factors for the support vector machine (SVM), we determine the non-linear metric to classify evil-twins and authorized APs. As a result, we can detect evil-twins with the probability of up to 96.5% and at least 89.75% even when the network is congested.

CNN-Based Hand Gesture Recognition for Wearable Applications (웨어러블 응용을 위한 CNN 기반 손 제스처 인식)

  • Moon, Hyeon-Chul;Yang, Anna;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • Hand gestures are attracting attention as a NUI (Natural User Interface) of wearable devices such as smart glasses. Recently, to support efficient media consumption in IoT (Internet of Things) and wearable environments, the standardization of IoMT (Internet of Media Things) is in the progress in MPEG. In IoMT, it is assumed that hand gesture detection and recognition are performed on a separate device, and thus provides an interoperable interface between these modules. Meanwhile, deep learning based hand gesture recognition techniques have been recently actively studied to improve the recognition performance. In this paper, we propose a method of hand gesture recognition based on CNN (Convolutional Neural Network) for various applications such as media consumption in wearable devices which is one of the use cases of IoMT. The proposed method detects hand contour from stereo images acquisitioned by smart glasses using depth information and color information, constructs data sets to learn CNN, and then recognizes gestures from input hand contour images. Experimental results show that the proposed method achieves the average 95% hand gesture recognition rate.

GPT-enabled SNS Sentence writing support system Based on Image Object and Meta Information (이미지 객체 및 메타정보 기반 GPT 활용 SNS 문장 작성 보조 시스템)

  • Dong-Hee Lee;Mikyeong Moon;Bong-Jun, Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • In this study, we propose an SNS sentence writing assistance system that utilizes YOLO and GPT to assist users in writing texts with images, such as SNS. We utilize the YOLO model to extract objects from images inserted during writing, and also extract meta-information such as GPS information and creation time information, and use them as prompt values for GPT. To use the YOLO model, we trained it on form image data, and the mAP score of the model is about 0.25 on average. GPT was trained on 1,000 blog text data with the topic of 'restaurant reviews', and the model trained in this study was used to generate sentences with two types of keywords extracted from the images. A survey was conducted to evaluate the practicality of the generated sentences, and a closed-ended survey was conducted to clearly analyze the survey results. There were three evaluation items for the questionnaire by providing the inserted image and keyword sentences. The results showed that the keywords in the images generated meaningful sentences. Through this study, we found that the accuracy of image-based sentence generation depends on the relationship between image keywords and GPT learning contents.

The Effects of Mortierella alpina Fungi and Extracted Oil (Arachidonic Acid Rich) on Growth and Learning Ability in Dam and Pups of Rat (흰쥐의 Mortierella alpina 균사체와 추출유의 섭취에 의한 생육 효과와 학습능력 비교)

  • 이승교;강희윤;박영주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1084-1091
    • /
    • 2002
  • Mortierella alpina, a common soil fungus, is the most efficient organism for production of production acid presently known. Since arachidonic acid are important in human brain and retina development, it was undertaken the growing effect containing diet as a food ingredient. Arachidonic acid rich oil derived from Mortierella alpina, was subjected to a program of studies to establish for use in diet supplement. This study was compared the growth and learning effect of fungal oil rich in arachidonic acid by incorporated into diets ad libitum. Sprague-Dawley rats received experimental diets 5 groups (standard AIN 93 based control with beef tallow, extract oil 8%, and 4%, and Mortierella alpina in diet 10% and 20%) over all experiment duration (pre-mating, mating, gestation, lactation, and after weaning 4 weeks). Pups born during this period consumed same diets after wean for 4 weeks. There was no statistical significance of diet effects in reproductive performance and fertility from birth to weaning. But the groups of Mortierella alpine diet were lower of weight gain and diet intake after weaning. The serum lipids were significantly different with diet groups, higher TG in LO (oil 4%) group of dams, and higher total cholesterol in LF (M. alpina 10%) of pups, although serum albumin content was not significantly different in diet group. The spent-time and memory effect within 4 weeks of T-Morris water maze pass test in dam and 7-week- age pups did not differ in diet groups. On the count of backing error in weaning period of pups was lower in HO(extracted oil 8%) group. In the group of 10% and 20% Mortierella alpina diet, DNA content was lower in brain with lower body weight, but liver DNA relative to body weight was higher than control. Further correlation analyses would be needed DNA and arachidonic acid intakes, with Mortierella alpina diet digestion rate.

Knowledge Management Strategy of a Franchise Business : The Case of a Paris Baguette Bakery (프랜차이즈 기업의 지식경영 전략 : 파리바게뜨 사례를 중심으로)

  • Cho, Joon-Sang;Kim, Bo-Yong
    • Journal of Distribution Science
    • /
    • v.10 no.6
    • /
    • pp.39-53
    • /
    • 2012
  • It is widely known that knowledge management plays a facilitating role that contributes to upgrading organizational performance. Knowledge management systems (KMS), especially, support the knowledge management process including the sharing, creating, and using of knowledge within a company, and maximize the value of knowledge resources within an organization. Despite this widely held belief, there are few studies that describe how companies actually develop, share, and practice their knowledge. Companies in the domestic small franchise sector, which are in the early stages in terms of knowledge management, need to improve their KMS to manage their franchisees effectively. From this perspective, this study uses a qualitative approach to explore the actual process of knowledge management implementation. This article presents a case study of PB (Paris Baguette) company, which is the first to build a KMS in the franchise industry. The study was able to confirm the following facts through the analysis of target companies. First, the chief executive's support is a critical success factor and this support can increase the participation of organization members. Second, it is important to build a process and culture that actively creates and leverages information in knowledge management activities. The organizational learning culture should be one where the creation, learning, and sharing of new knowledge is developed continuously. Third, a horizontal network organization is needed in order to make relationships within the organization more close-knit. Fourth, in order to connect the diverse processes such as knowledge acquisition, storage, and utilization of knowledge management activities, information technology (IT) capabilities are essential. Indeed, IT can be a powerful tool for improving the quality of work and maximizing the spread and use of knowledge. However, during the construction of an intranet based KMS, research is required to ensure that the most efficient system is implemented. Finally, proper evaluation and compensation are important success factors. In order to develop knowledge workers, an appropriate program of promotion and compensation should be established. Also, building members' confidence in the benefits of knowledge management should be an ongoing activity. The company developed its original KMS to achieve a flexible and proactive organization, and a new KMS to improve organizational and personal capabilities. The PB case shows that there are differences between participants perceptions and actual performance in managing knowledge; that knowledge management is not a matter of formality but a paradigm that assures the sharing of knowledge; and that IT boosts communication skills, thus creating a mutual relationship to enhance the flow of knowledge and information between people. Knowledge management for building organizational capabilities can be successful when considering its focus and ways to increase its acceptance. This study suggests guidelines for major factors that corporate executives of domestic franchises should consider to improve knowledge management and the higher operating activities that can be used.

  • PDF

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.