Mozhenko, Mykola;Donchyk, Andrii;Yushchenko, Anton;Suchkov, Denys;Yelenskyi, Roman
International Journal of Computer Science & Network Security
/
v.22
no.3
/
pp.141-146
/
2022
In modern educational practices, the issue of dependence on the experience of using multimedia by students and the adoption of technologies in education, the perception of their benefits and effectiveness in blended learning is little covered. The purpose of the academic paper lies in assessing the audiovisual context of multimedia technologies, its acceptance by students in practice on the example of using video lectures in blended learning. The methodology is based on an online survey of 120 students of Ukrainian universities who have assessed the experience level in using video lectures, as well as the constructs as follows: Technology Characteristics, Fit, Perceived Usefulness, Perceived Ease of Use, Attitude, Intention to Use, Actual Use. The results show that the majority of students use video lectures to a certain extent in their training (20,8% have used technology to a certain extent, 49,2% have often used technology in training, 20% are regular users of technology). It has been revealed that most students agree with the relevance of video lectures, the accuracy of lectures, the brevity of lectures, the clarity of lectures, as well as the high quality of lecture videos. It has been estimated that 42,5% believe that lecture videos are an effective tool towards supporting students in hybrid learning. 26,7% of students consider video lectures to be appropriate technologies for online / hybrid courses. In general, 37,5% of respondents find video lectures useful; however, 35,0% do not agree with this statement. 83,3% of students have rated the high level of ease of access to video. In total, 95% of students find lecture videos easy to use. In general, positive attitude of students to video lectures has been revealed.
Journal of Korea Society of Digital Industry and Information Management
/
v.18
no.4
/
pp.55-65
/
2022
The purpose of this study is to develop online educational contents and verify its effectiveness in order to strengthen the learning capabilities of college students. The theme of mind map online education contents is a mind map series for effective learning arrangement, and has been developed into a total of six contents. Each contents consisted of 20-30 minutes, and the details consisted of the concept, principle, learning case, how to write a mind map, and how to use a digital mind map. The results of the study are as follows. First, it was confirmed that the higher thinking ability of college students who took the mind map online education contents was improved. Second, it was confirmed that the self-directed learning attitude of college students improved after taking the mind map online education contents. Third, the reason why students' higher thinking ability and self-directed learning attitudes improved in this study is that they were developed in consideration of the composition of contents and appropriate video time. Therefore, in order to increase the effectiveness of online educational contents, it is necessary to examine specific cases using concepts from conceptual approaches to specific topics, and to faithfully reflect the procedure in which each learner can actually use the concept.
Experimenting with concrete to determine its compressive and tensile strengths is a laborious and time-consuming operation that requires a lot of attention to detail. Researchers from all around the world have spent the better part of the last several decades attempting to use machine learning algorithms to make accurate predictions about the technical qualities of various kinds of concrete. The research that is currently available on estimating the strength of concrete draws attention to the applicability and precision of the various machine learning techniques. This article provides a summary of the research that has previously been conducted on estimating the strength of concrete by making use of a variety of different machine learning methods. In this work, a classification of the existing body of research literature is presented, with the classification being based on the machine learning technique used by the researchers. The present review work will open the horizon for the researchers working on the machine learning based prediction of the compressive strength of concrete by providing the recommendations and benefits and drawbacks associated with each model as determining the compressive strength of concrete practically is a laborious and time-consuming task.
Journal of The Korean Association of Information Education
/
v.20
no.1
/
pp.1-12
/
2016
The purpose of this study is to investigate and analyze the elementary teachers' use of smart-phone applications (apps) in teaching-learning activities. The range of study includes the current usage patterns of apps in teaching-learning activities, elementary school teachers' understanding about apps usage in their classroom and providing the guideline about how to use apps for each subject in the classroom. We surveyed 100 elementary school teachers who are interested in smart education in Seoul. These teachers have an experience of working in a smart research school or have a computer-related master's degree. We expect that the result of the study will helpful for the elementary school teachers to design teaching materials using apps.
This study explored how a Chinese college student who previously had not reached a threshold level of Korean proficiency used L1 (Chinese) and L2 (English) as a tool to socialize into Korean (L3) culture of learning over the course of study. From a perspective of language socialization, this study examined the cross-linguistic influence of L1 and L2 on the L3 acquisition process by tracing an approach to language learning and practices taken by the Chinese student as a case study. Data were collected through three methods; interview protocols, various types of written texts, and observations. The results showed that the student used English as a means to negotiate difficulties and expertise by empowering her L2 exposure during the classroom practices. Her ways of using L2 in oral practices could be characterized as the 'Inverse U-shape' pattern, under which she increased L2 exposure at the early stage of the study and shifted the intermediate language to L3 at the later stage of the study. When it comes to the language use in written practices, the sequence of "L2-L1-L3" use gradually changed to the "L2-L3" sequence over time, signifying the importance of interaction between L2 and L3. However, the use of her native language (L1) in a Korean-speaking classroom was limited to a certain aspect of literacy practices (i.e., vocabulary learning or translation). This study argues for L2 communication channel in cross-cultural classrooms as a key factor to determine sustainable learning growth.
The purpose of this was to study and analyze smart learning the self directed learning, self efficacy, learning satisfaction about department of radiology in a college. For this study total students 74 in 2classes were surveyed at the end of semester. Compared to use smartphones one group and not use smartphones one group for study in a class. The research data was analyzed using SPSS also self directed learning, self learning efficacy, learning satisfaction analyzed t-test, general character was analyzed two group(one : Used smart learning other : not Used smart learning) ${\chi}^2-test$. First, Used smart learning group is more higher than not Used smart learning group in a self learning efficacy, self directed learning, learning satisfaction. Second, during the smart learning classes a students appeared a positive response. Suggest to change a paradigm in a radiology classes so we have to improve a teaching skills this solution recommend is two way communication. In conclusion, smart learning applied for classes of college is meaningful as a new teaching, which can be change gradually learning satisfaction by teaching methods.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.420-426
/
2022
Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.
International Journal of Advanced Culture Technology
/
v.9
no.4
/
pp.9-17
/
2021
This is a descriptive investigative study which attempts to confirm the mediating effect of learning motivation in the relationship between self-directed learning, learning commitment, and learning persistence intention of university students in an online learning environment. The questionnaires were randomly distributed online and the agreed questionnaires were retrieved, with a total of 338 copies used for analysis. The following is the summary of the findings. First, there were significant differences in learning persistence intention according to general characteristics depending on age, major, part-time job, and academic level. Second, the results showed a positive correlation between self-directed learning, learning commitment, learning motivation, and learning persistence intentions of the subjects were statistically significant. Third, after checking the mediating effect of learning motivation in relation to self-directed learning, learning commitment and learning motivation, the learning motivation has a partial mediating effect on learning and 23% explanatory power, and the learning commitment was found to have a complete mediating effect on the impact of learning motivation on learning intentions with 21% explanatory power. Based on these results, it is necessary to provide a more diverse educational environment, such as operating a motivation semester program that can improve learning motivations along with learning commitment, and the use of a variety of contents that can focus the learner's interest or attention.
Journal of information and communication convergence engineering
/
v.14
no.2
/
pp.97-105
/
2016
With the increasing demand for interoperability among existing learning resource systems in order to enable the sharing of learning resources, such resources need to be annotated with ontologies that use different metadata standards. These different ontologies must be reconciled through ontology mediation, so as to cope with information heterogeneity problems, such as semantic and structural conflicts. In this paper, we propose an ontology-mapping technique using Semantic Web Rule Language (SWRL) to generate semantic mapping rules that integrate learning resources from different systems and that cope with semantic and structural conflicts. Reasoning rules are defined to support a semantic search for heterogeneous learning resources, which are deduced by rule-based inference. Experimental results demonstrate that the proposed approach enables the integration of learning resources originating from multiple sources and helps users to search across heterogeneous learning resource systems.
Purpose: This study was done to identify the preferences for learning style and the degree of self-directed learning and influencing factors on it among nursing students working on a Bachelor of Science in a nursing program at Suwon. Methods: The study sample included 156 nursing students. A self-report questionnaire was used to assess the data. The data was analyzed using the SPSS/WIN program for descriptive and inferential statistics. Results: Most of the students preferred lectures rather than discussion or team projects as a teaching method. Students preferred deliberating, sensing, and the use of visuals for their learning style. In addition, they favored sequential learning over comprehensive learning. Self directed learning had better outcomes in 3rd and 4th year students than 1st or 2nd year students. Additionally, active learners and high achievers who had a good GPA showed higher self directed learning than the others. Conclusion: In order to maximize students' self-directed learning, study guidance will be necessary for freshmen and for some who experience difficulties in studying nursing courses. Nursing faculty members should pay close attention to facilitate student's self directed learning, and encourage more discussions in the classes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.