• Title/Summary/Keyword: use for learning

Search Result 4,740, Processing Time 0.285 seconds

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

Wrapper Generation for Collecting Comparative Shopping Information

  • Shin, Ju-Ri;Sohn, Bong-Ki;Lee, Keon-Myung t
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.127-132
    • /
    • 2003
  • This paper proposes a wrapper generation method for collecting comparative shopping information from various Internet shopping malls. The proposed method is a kind of supervised learning method to learn wrappers from sample web pages along with information locations designated by the administrators. It generates wrappers expressed in the form of generalized tags sequences and frame filling procedures for semi-structured web pages. The paper also presents how to use the learned wrappers and describes a prototype system which implemented the proposed ideas and methods.

A study on the utilization ability of Instructional media based on NCS for Young Child's Preliminary Teachers

  • Ha, Yan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.135-141
    • /
    • 2017
  • This thesis progressed research on the improvements of NCS multimedia utilization for preliminary teachers. A national module has not been developed yet in terms of child education, so this thesis suggests a curriculum according to the courses taught for freshmen and sophomores of K University Child Education majors. To lessen the burden of tremendous work and classes, provide motivation and interest in learning and maximize the effect, this thesis provides NCS based curriculum. It expects to improve task performance of teachers and help them with better skills to make class materials using up-to-date multimedia, regardless of the computer literacy of preliminary teachers. This thesis does prior research on the abilities to make use of computers and understand the level of computer literacy. Then it suggests NCS based curriculum goals and its performance standards to utilize task-suitable software. It aims to enable efficient multimedia usage, and optimize the learning efficiency of education linked to Nuri precesses.

A Case Study On the 6th Graders' Understanding of Variables Using LOGO Programming (Logo 프로그래밍을 통한 초등학교 6학년 아동의 변수개념 이해)

  • 류희찬;신혜진
    • Journal of Educational Research in Mathematics
    • /
    • v.10 no.1
    • /
    • pp.85-102
    • /
    • 2000
  • The concept of variables is central to mathematics teaching and learning in junior and senior high school. Understanding the concept provides the basis for the transition from arithmetic to algebra and necessary for the meaningful use of all advanced mathematics. Despite the importance of the concept, however, much has been written in the last decade concerning students' difficulties with the concept. This Thesis is based on research to investigate the hypothesis that LOGO programming will contribute to 6th grader' learning of variables. The aim of the research were to; .investigate practice on pupils' understanding of variables before the activity with a computer; .identify functions of LOGO programming in pupils' using and understanding of variable symbols, variable domain and the relationship between two variable dependent expressions during the activity using a computer; .investigate the influence of pupils' mathematical belief on understanding and using variables. The research consisted predominantly of a case study of 6 pupils' discourse and activities concerning variable during their abnormal lessons and interviews with researcher. The data collected for this study included video recordings of the pupils'work with their spoken language.

  • PDF

Development of a Visual Servo System in a Mobile Manipulator for Operating Numeral Buttons (이동형 머니퓰레이터의 숫자버튼 조작을 위한 시각제어 시스템 개발)

  • 박민규;이민철;주원동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.92-100
    • /
    • 2004
  • A service robot is expected to be useful in indoor environment such as a hotel, a hospital and so on. However, many service robots are driven by wheels so that they cannot climb stairs to move to other floors. If the robot cannot use elevators. In this paper, the mobile manipulator system was developed, which can operate numeral buttons on the operating panel in the elevator. To perform this task, the robot is composed of an image recognition module, an ultrasonic sensor module and a manipulator. The robot can recognize numeral buttons and an end-effector in manipulator by the vision system. The Learning vector quantization (LVQ) algorithm is used to recognize the number on the button. The barcode mark on the end-effector is used to recognize the end-effector. The manipulator can push numeral buttons using informations captured by the vision system. The proposed method is evaluated by experiments.

Evolutionary designing neural networks structures using genetic algorithm

  • Itou, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.43.2-43
    • /
    • 2001
  • In this paper, we consider the problems of the evolutionary designed neural networks structures by genetic algorithm. Neural networks has been applied to various application fields since back-propagation algorithm was proposed, e.g. function approximation, pattern or character recognition and so on. However, one of difficulties to use the neural networks. It is how to design the structure of the neural network. Researchers and users design networks structures and training parameters such as learning rate and momentum rate and so on, by trial and error based on their experiences. In the case of designing large scales neural networks, it is very hard work for manually design by try and error. For this difficulty, various structural learning algorithms have been proposed. Especially, the technique of using genetic algorithm for networks structures design has been ...

  • PDF

Recommendation system using Deep Autoencoder for Tensor data

  • Park, Jina;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.87-93
    • /
    • 2019
  • These days, as interest in the recommendation system with deep learning is increasing, a number of related studies to develop a performance for collaborative filtering through autoencoder, a state-of-the-art deep learning neural network architecture has advanced considerably. The purpose of this study is to propose autoencoder which is used by the recommendation system to predict ratings, and we added more hidden layers to the original architecture of autoencoder so that we implemented deep autoencoder with 3 to 5 hidden layers for much deeper architecture. In this paper, therefore we make a comparison between the performance of them. In this research, we use 2-dimensional arrays and 3-dimensional tensor as the input dataset. As a result, we found a correlation between matrix entry of the 3-dimensional dataset such as item-time and user-time and also figured out that deep autoencoder with extra hidden layers generalized even better performance than autoencoder.

A Study on Real Time Control of Moving Stuff Action Through Iterative Learning for Mobile-Manipulator System

  • Kim, Sang-Hyun;Kim, Du-Beum;Kim, Hui-Jin;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.415-425
    • /
    • 2019
  • This study proposes a new approach to control Moving Stuff Action Through Iterative Learning robot with dual arm for smart factory. When robot moves object with dual arm, not only position of each hand but also contact force at surface of an object should be considered. However, it is not easy to determine every parameters for planning trajectory of the an object and grasping object concerning about variety compliant environment. On the other hand, human knows how to move an object gracefully by using eyes and feel of hands which means that robot could learn position and force from human demonstration so that robot can use learned task at variety case. This paper suggest a way how to learn dynamic equation which concern about both of position and path.

On the Effect of a Pilot Coding Education Support System for Complex Problem Solving Tasks

  • Jeon, Inseong;Song, Ki-Sang
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.128-137
    • /
    • 2018
  • In the programming education, there is a great need of a teaching support system that can support the learner in the programming process regardless of the computer language due to instructor's difficulty of checking the progress of learners in real-time. Its importance is especially important in lower grade coding classes such as in K-12 education because they are not used to coding and so simple problems can be regarded as complex problems. For this, a pilot coding education support system based on Levenshtein distance algorithm which shows learners' progress to given solution in real-time was developed in order to help learners to solve complex problems easily, and the learners' motivation and self-efficacy was measured for estimating the usefulness of developed system targeting elementary school students. When the learners use the developed system, it was found that a statistically significant difference appears in the sub-factors of learning motivation compared with traditional class teaching environments. Among the sub-factors of self-efficacy, the efficacy dimension showed statistically significant difference too.

Knowledge Distillation for Unsupervised Depth Estimation (비지도학습 기반의 뎁스 추정을 위한 지식 증류 기법)

  • Song, Jimin;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2022
  • This paper proposes a novel approach for training an unsupervised depth estimation algorithm. The objective of unsupervised depth estimation is to estimate pixel-wise distances from camera without external supervision. While most previous works focus on model architectures, loss functions, and masking methods for considering dynamic objects, this paper focuses on the training framework to effectively use depth cue. The main loss function of unsupervised depth estimation algorithms is known as the photometric error. In this paper, we claim that direct depth cue is more effective than the photometric error. To obtain the direct depth cue, we adopt the technique of knowledge distillation which is a teacher-student learning framework. We train a teacher network based on a previous unsupervised method, and its depth predictions are utilized as pseudo labels. The pseudo labels are employed to train a student network. In experiments, our proposed algorithm shows a comparable performance with the state-of-the-art algorithm, and we demonstrate that our teacher-student framework is effective in the problem of unsupervised depth estimation.