• Title/Summary/Keyword: use for learning

Search Result 4,740, Processing Time 0.033 seconds

Construction of an Analysis System Using Digital Breeding Technology for the Selection of Capsicum annuum

  • Donghyun Jeon;Sehyun Choi;Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.233-233
    • /
    • 2022
  • As the world's population grows and food needs diversify, the demand for horticultural crops for beneficial traits is increasing. In order to meet this demand, it is necessary to develop suitable cultivars and breeding methods accordingly. Breeding methods have changed over time. With the recent development of sequencing technology, the concept of genomic selection (GS) has emerged as large-scale genome information can be used. GS shows good predictive ability even for quantitative traits by using various markers, breaking away from the limitations of Marker Assisted Selection (MAS). Moreover, GS using machine learning (ML) and deep learning (DL) has been studied recently. In this study, we aim to build a system that selects phenotype-related markers using the genomic information of the pepper population and trains a genomic selection model to select individuals from the validation population. We plan to establish an optimal genome wide association analysis model by comparing and analyzing five models. Validation of molecular markers by applying linkage markers discovered through genome wide association analysis to breeding populations. Finally, we plan to establish an optimal genome selection model by comparing and analyzing 12 genome selection models. Then We will use the genome selection model of the learning group in the breeding group to verify the prediction accuracy and discover a prediction model.

  • PDF

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

Android Botnet Detection Using Hybrid Analysis

  • Mamoona Arhsad;Ahmad Karim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.704-719
    • /
    • 2024
  • Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.

A Divide-Conquer U-Net Based High-Quality Ultrasound Image Reconstruction Using Paired Dataset (짝지어진 데이터셋을 이용한 분할-정복 U-net 기반 고화질 초음파 영상 복원)

  • Minha Yoo;Chi Young Ahn
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.118-127
    • /
    • 2024
  • Commonly deep learning methods for enhancing the quality of medical images use unpaired dataset due to the impracticality of acquiring paired dataset through commercial imaging system. In this paper, we propose a supervised learning method to enhance the quality of ultrasound images. The U-net model is designed by incorporating a divide-and-conquer approach that divides and processes an image into four parts to overcome data shortage and shorten the learning time. The proposed model is trained using paired dataset consisting of 828 pairs of low-quality and high-quality images with a resolution of 512x512 pixels obtained by varying the number of channels for the same subject. Out of a total of 828 pairs of images, 684 pairs are used as the training dataset, while the remaining 144 pairs served as the test dataset. In the test results, the average Mean Squared Error (MSE) was reduced from 87.6884 in the low-quality images to 45.5108 in the restored images. Additionally, the average Peak Signal-to-Noise Ratio (PSNR) was improved from 28.7550 to 31.8063, and the average Structural Similarity Index (SSIM) was increased from 0.4755 to 0.8511, demonstrating significant enhancements in image quality.

User Experience Study on First Aid Training Using Virtual Reality

  • Narmeen Alhyari;Shaidah Jusoh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.21-31
    • /
    • 2024
  • This study investigates the user experience (UX) of first aid training using virtual reality (VR) technology. As VR continues to be adopted for educational and training purposes, it is important to understand how learners perceive and engage with this medium for developing critical skills, such as first aid. In this study, we developed a VR application called "VR First Aid" that includes training modules on three emergency scenarios: heatstroke, shock, and seizure. The application has both tutorial and hands-on training components. We conducted a UX study by administering a questionnaire to participants. The UX of learning through the VR application was then compared to using a traditional e-book format. Results indicate that participants perceived stronger internal behavior control with the e-book but reported better confirmation, engagement, enjoyment, and intention to use when training with the VR system. Gender differences were also explored, revealing that female participants expressed greater interest in learning through the VR platform compared to male participants. These findings provide insights into the strengths and limitations of VR-based first aid training compared to traditional methods. Implications for the design and deployment of VR training systems are discussed, with a focus on optimizing the learner experience and learning outcomes.

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

Effects of Gender Difference on English Learning with Technology (성별의 차이가 테크놀로지를 이용한 영어 학습에 미치는 영향)

  • Kim, Na-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.403-416
    • /
    • 2019
  • The focus of this study is on the new instructional and pedagogical application of teaching English as a foreign language (TEFL) with technology and by gender. Participants comprised 204 TEFL students in Korea. The study was conducted in the 2017 academic year. For this study, all participants attended English class using technology for three hours a week. Course syllabus, lecture notes, and other study materials were uploaded to the school website. Homework assignments, quizzes, and exams were also distributed through the website. To ascertain whether there are any differential effects from gender on learning English as a foreign language using technology, the quantitative materials included pre- and post-tests. This study also adopted qualitative methods, with structured interviews to obtain participants' comprehensive view of technology-assisted English lessons. Paired sample t-tests and independent t-tests were administered to analyze the quantitative data. The qualitative data were analyzed with the content analysis method. Findings show that both male and female students improved their English-speaking skills using technology. However, no gender difference was found in technology-assisted TEFL. Technology use for learning English also resulted in both genders' positive perceptions of language lessons. Based on these findings, this study yields practical implications for TEFL teachers in Korea.

A Study on the Mobile-based Learning Environment Using English Vocabulary Learning Game (영어 어휘 학습 게임을 이용한 모바일 기반 학습 환경에 관한 연구)

  • Ha, Jeong-Sook;Park, Jung-Ho;Bae, Young-Kwon;Lee, Tae-Wuk
    • Journal of The Korean Association of Information Education
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 2006
  • For its maximum impact on the scene of school as the educational equipment, it is necessary to understand equipmental characteristics of PDA and study the basis for utilizing it educationally. In this point of view, to inquire how PDA is helpful for education more than PC, the typical educational equipment in the past, PDA-based English vocabulary learning game is developed in this study, and after that it is applied on the scene of education. The result of study showed PDA can access the content more easily than PC, and learners expressed more curiosity and expectation of PDA than PC in a recent poll. In addition, under the condition of learner's voluntary use, the present study has found that learning with PDA is helpful to enhance the academic achievement more than one with PC.

  • PDF

Transformation-based Learning for Korean Comparative Sentence Classification (한국어 비교 문장 유형 분류를 위한 변환 기반 학습 기법)

  • Yang, Seon;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.155-160
    • /
    • 2010
  • This paper proposes a method for Korean comparative sentence classification which is a part of comparison mining. Comparison mining, one area of text mining, analyzes comparative relations from the enormous amount of text documents. Three-step process is needed for comparison mining - 1) identifying comparative sentences in the text documents, 2) classifying those sentences into several classes, 3) analyzing comparative relations per each comparative class. This paper aims at the second task. In this paper, we use transformation-based learning (TBL) technique which is a well-known learning method in the natural language processing. In our experiment, we classify comparative sentences into seven classes using TBL and achieve an accuracy of 80.01%.

Prediction of Asphalt Pavement Service Life using Deep Learning (딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측)

  • Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.