• Title/Summary/Keyword: use for learning

Search Result 4,740, Processing Time 0.031 seconds

Development and Evaluation of the PBL Teaching/Learning Process Plan of 'Housing Culture and Practical Space Use' for Home Economics in Middle School (중학교 가정과 문제 중심 '주생활 문화와 주거 공간 활용' 교수·학습 과정안 개발과 평가)

  • Cho, Jiwon;Cho, Jaesoon
    • Journal of Korean Home Economics Education Association
    • /
    • v.32 no.2
    • /
    • pp.59-76
    • /
    • 2020
  • The purpose of this study was to develop and evaluate the teaching/learning process plan of 'housing culture and practical space use' for home economics in middle school according to the problem based learning(PBL) model. The plan consisting of 4-lessons has been developed and implemented following the steps of ADDIE model. Various activity materials (4 scenarios, 6 individual activity sheets, 10 reading texts, and 5 working resources) and visual materials (4 sets of ppt and 4 moving pictures) as well as questionnaire were developed for the 4-session lessons. The plans were implemented to a single class of 21 junior students at H middle school in rural area, Kyeongnam, from 1st to 12th of April, 2019. Students highly enjoyed and were satisfied with the whole 4-lessons in aspects such as understanding of the contents, adequacy of materials and activities, and usefulness in one's own daily life. Additionally, they have more actively participated in the lessons than usual and even interested in learning more of such lessons. Students also reported that they highly accomplished the goal of each lesson as well as overall objectives. They showed interest in the major part of PBL lesson such as scenario and group activities. And they engaged themselves in drawing the share housing space plan with '5D planner' web program which they described as the best part of the lessons. The teaching/learning process plan developed in this study may be used as a theme of maker education, which is emerging these days. It can be concluded that the PBL teaching/learning process plans for 'housing values and practical space use' would contribute to improving students' attitude on living with others and ability to manage one's individual life.

Automatic Metallic Surface Defect Detection using ShuffleDefectNet

  • Anvar, Avlokulov;Cho, Young Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • Steel production requires high-quality surfaces with minimal defects. Therefore, the detection algorithms for the surface defects of steel strip should have good generalization performance. To meet the growing demand for high-quality products, the use of intelligent visual inspection systems is becoming essential in production lines. In this paper, we proposed a ShuffleDefectNet defect detection system based on deep learning. The proposed defect detection system exceeds state-of-the-art performance for defect detection on the Northeastern University (NEU) dataset obtaining a mean average accuracy of 99.75%. We train the best performing detection with different amounts of training data and observe the performance of detection. We notice that accuracy and speed improve significantly when use the overall architecture of ShuffleDefectNet.

The effective use of literary text in English education (영어능력 개발을 위한 문학텍스트 활용방안)

  • Han, Sang-Taek
    • English Language & Literature Teaching
    • /
    • v.7 no.1
    • /
    • pp.179-208
    • /
    • 2001
  • Using literary materials as resources for English learning rather than an object of literary study can be a genuine tool for the students to learn English in the form of oral and written communication. This case study treated the applications of a whole text to the overall course divided into pre-reading activities, while-reading activities, and post-reading activities and the applications of some partial passages extracted from various texts to teaching objectives with many levels of difficulty. This study found that literary texts could be good materials to teach the target language in EFL setting. The English-speaking students with little linguistic competence as a foreign language may be limited in learning English at first, but soon they can accelerate their linguistic competence by reinforcing the literary competence through the literary texts. To achieve effectively a desired goal through the use of literary texts as resources for language development several concrete techniques should be introduced: teacher-guided question strategies laying a central emphasis on the text itself, a problem-solving ability through student-centered activities, process-based and open-ended activities should be presented in a variety of ways using many appropriate activities according to teaching procedure with a careful selection of the texts.

  • PDF

The Design of Multi-FNN Model Using HCM Clustering and Genetic Algorithms and Its Applications to Nonlinear Process (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 FNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;김현기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.47-50
    • /
    • 2000
  • In this paper, an optimal identification method using Multi-FNN(Fuzzy-Neural Network) is proposed for model ins of nonlinear complex system. In order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM clustering algorithm which carry out the input-output data preprocessing function and Genetic Algorithm which carry out optimization of model. The proposed Multi-FNN is based on Yamakawa's FNN and it uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. HCM clustering method which carry out the data preprocessing function for system modeling, is utilized to determine the structure of Multi-FNN by means of the divisions of input-output space. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. Also, a performance index with a weighting factor is presented to achieve a sound balance between approximation and generalization abilities of the model, To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Corpus-Based Ontology Learning for Semantic Analysis (의미 분석을 위한 말뭉치 기반의 온톨로지 학습)

  • 강신재
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • This paper proposes to determine word senses in Korean language processing by corpus-based ontology learning. Our approach is a hybrid method. First, we apply the previously-secured dictionary information to select the correct senses of some ambiguous words with high precision, and then use the ontology to disambiguate the remaining ambiguous words. The mutual information between concepts in the ontology was calculated before using the ontology as knowledge for disambiguating word senses. If mutual information is regarded as a weight between ontology concepts, the ontology can be treated as a graph with weighted edges, and then we locate the least weighted path from one concept to the other concept. In our practical machine translation system, our word sense disambiguation method achieved a 9% improvement over methods which do not use ontology for Korean translation.

  • PDF

Gender Differences in Problematic Online Behavior of Adolescent Users over Time (남녀 청소년 소비자의 온라인 문제행동 차이에 대한 종단 분석)

  • Kim, Jung Eun
    • Human Ecology Research
    • /
    • v.53 no.6
    • /
    • pp.641-654
    • /
    • 2015
  • This study identifies and tracks changes gender differences in adolescent users' problematic online behavior. This study used Korea Youth Panel Survey (KYPS), which has tracked respondents over 7 years, with self-control theory and social learning theory applied as a theoretical framework. The model included individual-level variables such as self-control and respondent's experience of problematic behavior (offline), as well as socialization variables such as the number close friends who engaged in problematic offline behavior, parent-child relationships, and parental monitoring. Dependent variables included problematic online behavior, unauthorized ID use (ID theft) and cyberbullying (cursing/insulting someone in a chat room or on a bulletin board). Control variables consisted of academic performance, time spent on a computer, monthly household income, and father's educational attainment. Random and fixed effects models were performed by gender. Results supported self-control theory even for the within-level analysis (fixed effects models) regardless of gender, while social learning theory was partially supported. Only peer effects were found significant (except for unauthorized ID use) among girls. Year dummy variables showed significant negative associations; however, academic performance and time spent using computers were significant in some models. Father's educational attainment and monthly household income were found insignificant, even in the random effects models. We also discuss implications and suggestions for future research and policy makers.

Convolutional Neural Network Based Multi-feature Fusion for Non-rigid 3D Model Retrieval

  • Zeng, Hui;Liu, Yanrong;Li, Siqi;Che, JianYong;Wang, Xiuqing
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.176-190
    • /
    • 2018
  • This paper presents a novel convolutional neural network based multi-feature fusion learning method for non-rigid 3D model retrieval, which can investigate the useful discriminative information of the heat kernel signature (HKS) descriptor and the wave kernel signature (WKS) descriptor. At first, we compute the 2D shape distributions of the two kinds of descriptors to represent the 3D model and use them as the input to the networks. Then we construct two convolutional neural networks for the HKS distribution and the WKS distribution separately, and use the multi-feature fusion layer to connect them. The fusion layer not only can exploit more discriminative characteristics of the two descriptors, but also can complement the correlated information between the two kinds of descriptors. Furthermore, to further improve the performance of the description ability, the cross-connected layer is built to combine the low-level features with high-level features. Extensive experiments have validated the effectiveness of the designed multi-feature fusion learning method.

Presenting Direction for the Implementation of Personal Movement Trainer through Artificial Intelligence based Behavior Recognition (인공지능 기반의 행동인식을 통한 개인 운동 트레이너 구현의 방향성 제시)

  • Ha, Tae Yong;Lee, Hoojin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.235-242
    • /
    • 2019
  • Recently, the use of artificial intelligence technology including deep learning has become active in various fields. In particular, several algorithms showing superior performance in object recognition and detection based on deep learning technology have been presented. In this paper, we propose the proper direction for the implementation of mobile healthcare application that user's convenience is effectively reflected. By effectively analyzing the current state of use satisfaction research for the existing fitness applications and the current status of mobile healthcare applications, we attempt to secure survival and superiority in the fitness application market, and, at the same time, to maintain and expand the existing user base.

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.

Classification and Restoration of Compositely Degraded Images using Deep Learning (딥러닝 기반의 복합 열화 영상 분류 및 복원 기법)

  • Yun, Jung Un;Nagahara, Hajime;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.430-439
    • /
    • 2019
  • The CNN (convolutional neural network) based single degradation restoration method shows outstanding performance yet is tailored on solving a specific degradation type. In this paper, we present an algorithm of multi-degradation classification and restoration. We utilize the CNN based algorithm for solving image degradation classification problem using pre-trained Inception-v3 network. In addition, we use the existing CNN based algorithms for solving particular image degradation problems. We identity the restoration order of multi-degraded images empirically and compare with the non-reference image quality assessment score based on CNN. We use the restoration order to implement the algorithm. The experimental results show that the proposed algorithm can solve multi-degradation problem.