• Title/Summary/Keyword: use for learning

Search Result 4,740, Processing Time 0.038 seconds

Context-Sensitive Spelling Error Correction Techniques in Korean Documents using Generative Adversarial Network (생성적 적대 신경망(GAN)을 이용한 한국어 문서에서의 문맥의존 철자오류 교정)

  • Lee, Jung-Hun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1391-1402
    • /
    • 2021
  • This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.

Deep learning-based de-fogging method using fog features to solve the domain shift problem (Domain Shift 문제를 해결하기 위해 안개 특징을 이용한 딥러닝 기반 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1319-1325
    • /
    • 2021
  • It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.

Automatic and objective gradation of 114 183 terrorist attacks using a machine learning approach

  • Chi, Wanle;Du, Yihong
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.694-701
    • /
    • 2021
  • Catastrophic events cause casualties, damage property, and lead to huge social impacts. To build common standards and facilitate international communications regarding disasters, the relevant authorities in social management rank them in subjectively imposed terms such as direct economic losses and loss of life. Terrorist attacks involving uncertain human factors, which are roughly graded based on the rule of property damage, are even more difficult to interpret and assess. In this paper, we collected 114 183 open-source records of terrorist attacks and used a machine learning method to grade them synthetically in an automatic and objective way. No subjective claims or personal preferences were involved in the grading, and each derived common factor contains the comprehensive and rich information of many variables. Our work presents a new automatic ranking approach and is suitable for a broad range of gradation problems. Furthermore, we can use this model to grade all such attacks globally and visualize them to provide new insights.

DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

  • Chen, Tieming;Mao, Qingyu;Lv, Mingqi;Cheng, Hongbing;Li, Yinglong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2180-2197
    • /
    • 2019
  • With the proliferation of the Android malicious applications, malware becomes more capable of hiding or confusing its malicious intent through the use of code obfuscation, which has significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in order to effectively detect unknown malicious applications on the Android platform, we propose DroidVecDeep, an Android malware detection method using deep learning technique. First, we extract various features and rank them using Mean Decrease Impurity. Second, we transform the features into compact vectors based on word2vec. Finally, we train the classifier based on deep learning model. A comprehensive experimental study on a real sample collection was performed to compare various malware detection approaches. Experimental results demonstrate that the proposed method outperforms other Android malware detection techniques.

Experience in Online Education in Logistic-related Departments in the New Normal Age (뉴노멀시대에 있어서 물류 관련 학과의 온라인교육 경험)

  • Bae, Soo Hyun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.139-145
    • /
    • 2020
  • The purpose of this study is to share the experience of online education with departments related to the servic industry, such as distribution and logistics, in the New Normal Age of COVID-19 pandemics. The graduation presentation project, which is the capstone design subject and the most urgent subject for face-to-face classes, was selected as the online education subject of this study. The results of this study are as follows : First, several online class tools, such as Zoom, Microsoft Teams, and Google Meet, have also been shown to be applicable to capstone design subjects such as graduation presentation projects. Second, it is essential to reorganize the curriculum to enhance students' ability to practice and utilize online contents. Third, continuous education and training are needed to make easy use of the aforementioned online teaching tools. Meanwhile, fourth, further research is needed to solve the learning effects caused by online learning, and difficulties in communication.

Research Trends on Inverse Reinforcement Learning (역강화학습 기술 동향)

  • Lee, S.K.;Kim, D.W.;Jang, S.H.;Yang, S.I.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.100-107
    • /
    • 2019
  • Recently, reinforcement learning (RL) has expanded from the research phase of the virtual simulation environment to a wide range of applications, such as autonomous driving, natural language processing, recommendation systems, and disease diagnosis. However, RL is less likely to be used in these complex real-world environments. In contrast, inverse reinforcement learning (IRL) can obtain optimal policies in various situations; furthermore, it can use expert demonstration data to achieve its target task. In particular, IRL is expected to be a key technology for artificial general intelligence research that can successfully perform human intellectual tasks. In this report, we briefly summarize various IRL techniques and research directions.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

Image Classification Model using web crawling and transfer learning (웹 크롤링과 전이학습을 활용한 이미지 분류 모델)

  • Lee, JuHyeok;Kim, Mi Hui
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.639-646
    • /
    • 2022
  • In this paper, to solve the large dataset problem, we collect images through an image collection method called web crawling and build datasets for use in image classification models through a data preprocessing process. We also propose a lightweight model that can automatically classify images by adding category values by incorporating transfer learning into the image classification model and an image classification model that reduces training time and achieves high accuracy.

An Experimental Study on the Measurement of Finess Modulus Using CNN-based Deep Learning Model (CNN기반의 딥러닝 모델을 활용한 잔골재 조립률 예측에 관한 실험적 연구)

  • Lim, Sung-Gyu;Yoon, Jong-Wan;Pack, Tae-Joon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.10-11
    • /
    • 2021
  • As concrete is used in many construction works, the use of aggregates is increasing. However, supply and demand of high-quality aggregates has become difficult recently, and although circular aggregates that recycle construction waste are used, the performance of concrete, such as liquidity and strength, are being reduced due to defective aggregates. As a result, quality tests such as sieve analysis test are conducted, but a lot of waste occurs such as time and manpower. To solve this problem, this study was conducted to measure the assembly rate of fine aggregate, which accounts for about 35% of the concrete volume, using Deep Learning.

  • PDF

Modern Face Recognition using New Masked Face Dataset Generated by Deep Learning (딥러닝 기반의 새로운 마스크 얼굴 데이터 세트를 사용한 최신 얼굴 인식)

  • Pann, Vandet;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.647-650
    • /
    • 2021
  • The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.