• Title/Summary/Keyword: use for learning

Search Result 4,739, Processing Time 0.035 seconds

A Case Study on Global Educational Innovation using U-Learning Box and Ubiquitous-based Test (유러닝 박스와 유비쿼터스 기반의 시험 시스템을 이용한 글로벌 교육 혁신 사례 연구)

  • Hwang, Mintae;Bajracharya, Larsson
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.279-288
    • /
    • 2018
  • In this paper, we present the results of educational innovation case study using U-Learning Box and Ubiquitous-based Test(UBT) system for 6 sample primary schools in Nepal. As Nepal is considered to be a developing country with electricity problem to the school, the U-Learning Box, consisting of a small and easy-to-use tablet PC for teacher and a small smart beam with its own battery was evaluated as the optimum solution to support continuous basic English and hygiene education for these schools. And UBT technology using tablet PC was used to evaluate and analyze basic English learning ability of the students, which helped us realized that it is necessary to improve the educational environment and develop suitable educational contents. We hope that the global educational innovation using U-Learning Box and UBT technology will become a successful model for global equality of educational opportunity project for developing countries including Nepal.

A Study on the Use of Machine Learning Models in Bridge on Slab Thickness Prediction (머신러닝 기법을 활용한 교량데이터 설계 시 슬래브두께 예측에 관한 연구)

  • Chul-Seung Hong;Hyo-Kwan Kim;Se-Hee Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2023
  • This paper proposes to apply machine learning to the process of predicting the slab thickness based on the structural analysis results or experience and subjectivity of engineers in the design of bridge data construction to enable digital-based decision-making. This study aims to build a reliable design environment by utilizing machine learning techniques to provide guide values to engineers in addition to structural analysis for slab thickness selection. Based on girder bridges, which account for the largest proportion of bridge data, a prediction model process for predicting slab thickness among superstructures was defined. Various machine learning models (Linear Regress, Decision Tree, Random Forest, and Muliti-layer Perceptron) were competed for each process to produce the prediction value for each process, and the optimal model was derived. Through this study, the applicability of machine learning techniques was confirmed in areas where slab thickness was predicted only through existing structural analysis, and an accuracy of 95.4% was also obtained. models can be utilized in a more reliable construction environment if the accuracy of the prediction model is improved by expanding the process

Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation (전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류)

  • Dong-Min Park;Yeong-Seok Jo;Seokwon Yeom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In recent years, as the range of human activities has increased, the introduction of alien species has become frequent. Among them, raccoons have been designated as harmful animals since 2020. Raccoons are similar in size and shape to raccoon dogs, so they generally need to be distinguished in capturing them. To solve this problem, we use VGG19, ResNet152V2, InceptionV3, InceptionResNet and NASNet, which are CNN deep learning models specialized for image classification. The parameters to be used for learning are pre-trained with a large amount of data, ImageNet. In order to classify the raccoon and raccoon dog datasets as outward features of animals, the image was converted to grayscale and brightness was normalized. Augmentation methods were applied using left and right inversion, rotation, scaling, and shift to create sufficient data for transfer learning. The FCL consists of 1 layer for the non-augmented dataset while 4 layers for the augmented dataset. Comparing the accuracy of various augmented datasets, the performance increased as more augmentation methods were applied.

Nonlinear system control by use of neural networks

  • Zhang, Ping;Sankai, Yoshiyuki;Ohta, Michio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.411-415
    • /
    • 1994
  • An adaptive learning control scheme by use of multilayer neural networks for compensating for uncertainties in nonlinear dynamic system is examined. Multilayer neural networks are introduced to map the uncertainties in nonlinear dynamics and perform nonlinear state feedback. Parameters of neural networks are adjusted by conventional back-propagation algorithms modified with the projection operation. Effectiveness of the proposed scheme for tracking control are demonstrated through computer simulations.

  • PDF

A Study on the Local Residents' Needs for Mixed-use School Facilities (학교시설 복합화를 위한 지역주민의 요구에 관한 연구)

  • Hwang, Sung-Hye;Park, Soo-Been
    • Journal of the Korean housing association
    • /
    • v.21 no.5
    • /
    • pp.125-135
    • /
    • 2010
  • As the educational environment is qualitatively improved by revision of the school curriculum, local residents become increasingly interested in sharing the educational environment through the mixed-use of school facilities. The purpose of this study was to obtain a better understanding of the use and need for school facilities. This study involved a literature review and a survey of local residents who have used school facilities. The results are as follows: (1) sports and learning facilities were the most used of five different types of school facilities, (2) school facilities were mainly used in the evenings (18:00~22:00 hrs), but the respondents differed in terms of time of use according to gender, age and work hours, (3) the result showed high needs for all types of facility and needs for sports facilities among them were the highest, and (4) preferred time of use was varied according to the type of facility and the residents' characteristics. In conclusion, this study explored various directions for the mixed-use of school facilities by analyzing local residents' current use and their needs for further use of these facilities, taking into account the different characteristics of the users.

Improving Malicious Web Code Classification with Sequence by Machine Learning

  • Paik, Incheon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.319-324
    • /
    • 2014
  • Web applications make life more convenient. Many web applications have several kinds of user input (e.g. personal information, a user's comment of commercial goods, etc.) for the activities. On the other hand, there are a range of vulnerabilities in the input functions of Web applications. Malicious actions can be attempted using the free accessibility of many web applications. Attacks by the exploitation of these input vulnerabilities can be achieved by injecting malicious web code; it enables one to perform a variety of illegal actions, such as SQL Injection Attacks (SQLIAs) and Cross Site Scripting (XSS). These actions come down to theft, replacing personal information, or phishing. The existing solutions use a parser for the code, are limited to fixed and very small patterns, and are difficult to adapt to variations. A machine learning method can give leverage to cover a far broader range of malicious web code and is easy to adapt to variations and changes. Therefore, this paper suggests the adaptable classification of malicious web code by machine learning approaches for detecting the exploitation user inputs. The approach usually identifies the "looks-like malicious" code for real malicious code. More detailed classification using sequence information is also introduced. The precision for the "looks-like malicious code" is 99% and for the precise classification with sequence is 90%.

Evolutionary Learning of Sigma-Pi Neural Trees and Its Application to classification and Prediction (시그마파이 신경 트리의 진화적 학습 및 이의 분류 예측에의 응용)

  • 장병탁
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1996
  • The necessity and usefulness of higher-order neural networks have been well-known since early days of neurocomputing. However the explosive number of terms has hampered the design and training of such networks. In this paper we present an evolutionary learning method for efficiently constructing problem-specific higher-order neural models. The crux of the method is the neural tree representation employing both sigma and pi units, in combination with the use of an MDL-based fitness function for learning minimal models. We provide experimental results in classification and prediction problems which demonstrate the effectiveness of the method. I. Introduction topology employs one hidden layer with full connectivity between neighboring layers. This structure has One of the most popular neural network models been very successful for many applications. However, used for supervised learning applications has been the they have some weaknesses. For instance, the fully mutilayer feedforward network. A commonly adopted connected structure is not necessarily a good topology unless the task contains a good predictor for the full *d*dWs %BH%W* input space.

  • PDF

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.

A Container Orchestration System for Process Workloads

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.270-278
    • /
    • 2023
  • We propose a container orchestration system for process workloads that combines the potential of big data and machine learning technologies to integrate enterprise process-centric workloads. This proposed system analyzes big data generated from industrial automation to identify hidden patterns and build a machine learning prediction model. For each machine learning case, training data is loaded into a data store and preprocessed for model training. In the next step, you can use the training data to select and apply an appropriate model. Then evaluate the model using the following test data: This step is called model construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA in the proposed system, several virtual systems were implemented to build the cluster required for the big data cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as layers of individual components that can be connected together. The advantage of a system is that components can be added, replaced, or reused without affecting the rest of the system.