• Title/Summary/Keyword: use for information

Search Result 27,363, Processing Time 0.062 seconds

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

An Analytical Study on Stem Growth of Chamaecyparis obtusa (편백(扁栢)의 수간성장(樹幹成長)에 관(關)한 해석적(解析的) 연구(硏究))

  • An, Jong Man;Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.4
    • /
    • pp.429-444
    • /
    • 1988
  • Considering the recent trent toward the development of multiple-use of forest trees, investigations for comprehensive information on these young stands of Hinoki cypress are necessary for rational forest management. From this point of view, 83 sample trees were selected and cut down from 23-ear old stands of Hinoki cypress at Changsung-gun, Chonnam-do. Various stem growth factors of felled trees were measured and canonical correlaton analysis, principal component analysis and factor analysis were applied to investigate the stem growth characteristics, relationships among stem growth factors, and to get potential information and comprehensive information. The results are as follows ; Canonical correlation coefficient between stem volume and quality growth factor was 0.9877. Coefficient of canonical variates showed that DBH among diameter growth factors and height among height growth factors had important effects on stem volume. From the analysis of relationship between stem-volume and canonical variates, which were linearly combined DBH with height as one set, DBH had greater influence on volume growth than height. The 1st-2nd principal components here adopted to fit the effective value of 85% from the pincipal component analysis for 12 stem growth factors. The result showed that the 1st-2nd principal component had cumulative contribution rate of 88.10%. The 1st and the 2nd principal components were interpreted as "size factor" and "shape factor", respectively. From summed proportion of the efficient principal component fur each variate, information of variates except crown diameter, clear length and form height explained more than 87%. Two common factors were set by the eigen value obtained from SMC (squared multiple correlation) of diagonal elements of canonical matrix. There were 2 latent factors, $f_1$ and $f_2$. The former way interpreted as nature of diameter growth system. In inherent phenomenon of 12 growth factor, communalities except clear length and crown diameter had great explanatory poorer of 78.62-98.30%. Eighty three sample trees could he classified into 5 stem types as follows ; medium type within a radius of ${\pm}1$ standard deviation of factor scores, uniformity type in diameter and height growth in the 1st quadrant, slim type in the 2nd quadrant, dwarfish type in the 3rd quadrant, and fall-holed type in the 4 th quadrant.

  • PDF

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Clinical Applications and Efficacy of Korean Ginseng (고려인삼의 주요 효능과 그 임상적 응용)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.111-131
    • /
    • 2002
  • Korean ginseng (Panax ginseng C.A. Meyer) received a great deal of attention from the Orient and West as a tonic agent, health food and/or alternative herbal therapeutic agent. However, controversy with respect to scientific evidence on pharmacological effects especially, evaluation of clinical efficacy and the methodological approach still remains to be solved. Author reviewed those articles published since 1980 when pharmacodynamic studies on ginseng have intensively started. Special concern was paid on metabolic disorders including diabetes mellitus, circulatory disorders, malignant tumor, sexual dysfunction, and physical and mental performance to give clear information to those who are interested in pharmacological study of ginseng and to promote its clinical use. With respect to chronic diseases such as diabetes mellitus, atherosclerosis, high blood pressure, malignant disorders, and sexual disorders, it seems that ginseng plays preventive and restorative role rather than therapeutics. Particularly, ginseng plays a significant role in ameliorating subjective symptoms and preventing quality of life from deteriorating by long term exposure of chemical therapeutic agents. Also it seems that the potency of ginseng is mild, therefore it could be more effective when used concomitantly with conventional therapy. Clinical studies on the tonic effect of ginseng on work performance demonstrated that physical and mental dysfunction induced by various stresses are improved by increasing adaptability of physical condition. However, the results obtained from clinical studies cannot be mentioned in the indication, which are variable upon the scientist who performed those studies. In this respect, standardized ginseng product and providing planning of the systematic clinical research in double-blind randomized controlled trials are needed to assess the real efficacy for proposing ginseng indication. Pharmacological mode of action of ginseng has not yet been fully elucidated. Pharmacodynamic and pharmacokinetic researches reveal that the role of ginseng not seem to be confined to a given single organ. It has been known that ginseng plays a beneficial role in such general organs as central nervous, endocrine, metabolic, immune systems, which means ginseng improves general physical and mental conditons. Such multivalent effect of ginseng can be attributed to the main active component of ginseng,ginsenosides or non-saponin compounds which are also recently suggested to be another active ingredients. As is generally the similar case with other herbal medicines, effects of ginseng cannot be attributed as a given single compound or group of components. Diversified ingredients play synergistic or antagonistic role each other and act in harmonized manner. A few cases of adverse effect in clinical uses are reported, however, it is not observed when standardized ginseng products are used and recommended dose was administered. Unfavorable interaction with other drugs has also been suggested, which the information on the products and administered dosage are not available. However, efficacy, safety, interaction or contraindication with other medicines has to be more intensively investigated in order to promote clinical application of ginseng. For example, daily recommended doses per day are not agreement as 1-2g in the West and 3-6 g in the Orient. Duration of administration also seems variable according to the purpose. Two to three months are generally recommended to feel the benefit but time- and dose-dependent effects of ginseng still need to be solved from now on. Furthermore, the effect of ginsenosides transformed by the intestinal microflora, and differential effect associated with ginsenosides content and its composition also should be clinically evaluated in the future. In conclusion, the more wide-spread use of ginseng as a herbal medicine or nutraceutical supplement warrants the more rigorous investigations to assess its effacy and safety. In addition, a careful quality control of ginseng preparations should be done to ensure an acceptable standardization of commercial products.

Design and Implementation of Game Server using the Efficient Load Balancing Technology based on CPU Utilization (게임서버의 CPU 사용율 기반 효율적인 부하균등화 기술의 설계 및 구현)

  • Myung, Won-Shig;Han, Jun-Tak
    • Journal of Korea Game Society
    • /
    • v.4 no.4
    • /
    • pp.11-18
    • /
    • 2004
  • The on-line games in the past were played by only two persons exchanging data based on one-to-one connections, whereas recent ones (e.g. MMORPG: Massively Multi-player Online Role-playings Game) enable tens of thousands of people to be connected simultaneously. Specifically, Korea has established an excellent network infrastructure that can't be found anywhere in the world. Almost every household has a high-speed Internet access. What made this possible was, in part, high density of population that has accelerated the formation of good Internet infrastructure. However, this rapid increase in the use of on-line games may lead to surging traffics exceeding the limited Internet communication capacity so that the connection to the games is unstable or the server fails. expanding the servers though this measure is very costly could solve this problem. To deal with this problem, the present study proposes the load distribution technology that connects in the form of local clustering the game servers divided by their contents used in each on-line game reduces the loads of specific servers using the load balancer, and enhances performance of sewer for their efficient operation. In this paper, a cluster system is proposed where each Game server in the system has different contents service and loads are distributed efficiently using the game server resource information such as CPU utilization. Game sewers having different contents are mutually connected and managed with a network file system to maintain information consistency required to support resource information updates, deletions, and additions. Simulation studies show that our method performs better than other traditional methods. In terms of response time, our method shows shorter latency than RR (Round Robin) and LC (Least Connection) by about 12%, 10% respectively.

  • PDF

Searching for the SCM Improvement Directions through the Power Attribute and Partnership (파워 유형과 파트너십 연계를 통한 공급사슬관리 개선방안 모색)

  • Jung, Dae-Hyun;Park, Kwang-O
    • Management & Information Systems Review
    • /
    • v.35 no.3
    • /
    • pp.57-79
    • /
    • 2016
  • It is required to derive various conclusions by identifying the type of power and the relationship between SCMs and presenting practical implications. Thus, we can identify the differential effects of each type of power on SCM performance. We can contribute to develop the practical implications at more sophisticated multi-dimension by comparing results of this study with various SCM theories. Through previous studies, the source of power is largely divided into binding power and non-binding power. Binding power is classified into behavior coercion, binding reward and relationship legitimacy. Non-binding power is classified into work expertise, information superiority and value compliance. Enterprises should fully understand and recognize partners within supply chains including understanding of the source of power, imbalance and results. Thus, we look into types of power and effects on trust and commitment, and identify a causal relationship leading to collaboration and SCM performance. Specific research results are as follows. First, the binding power did not give a significant effect to the trust. However, the binding power gave a positively(+) significant effect to the commitment. Second, non-binding power showed a significant effect on both trust and commitment. As a result of analysis on total effects, it was shown that non-binding power gave indirect effects to collaboration and SCM performance. Third, it was shown that both trust and commitment significantly affected collaboration. From the perspectives of social exchange theory and trading cost theory among inter-organizational relationship theory, it may lead to SCM performance of trust, commitment and collaboration. Moreover, it was found that association of each attribute of power led to the significant result. Fourth, it was shown that trust and collaboration significantly affected SCM performance. However, commitment did not directly affect SCM performance, but it indirectly significantly affected SCM performance through collaboration. Proper use of this power can firmly build partnerships between members of the supply chain and induce the improvement on supply chain performance and satisfaction of members.

  • PDF

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters (RTCM-SSR 보정요소 기반 1주파 Multi-GNSS 실시간 측위의 효용성 평가)

  • Lee, Yong-Chang;Oh, Seong-Jong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.107-123
    • /
    • 2020
  • With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.

Chronic pain control in patients with rheumatoid arthritis (만성통증 환자의 통증 조절)

  • Eun, Young
    • Journal of muscle and joint health
    • /
    • v.2 no.1
    • /
    • pp.17-40
    • /
    • 1995
  • Rheumatoid arthritis is the one of the chronic diseases, one of its major symptoms is a chronic pain. Despite developing medical treatment and surgical techniques, it is suggested that to control the pain is the goal of the treatment. But pain is an inner experience and even those closest to the patient cannot truly observe its progress or share in its suffering. The National Academy of Sciences Institute of Medicine's report on Pain and Disability concluded that there is no objective measure of pain-(exactly) no pain thermometer-nor can there ever be one, because the experience of pain is inseparable from personal perception and social influence such as culture. To explore chronic pain experience is to understand the process and property of the patient's perception of pain through the response to pain, the coping with pain, and the adaptation to pain. Therefore a qualitative study was conducted in order to gain an understanding of pain experience of patients with RA in korea. I used naturalistic inquiry as a research methodology, which had 5 axioms, the first is that realities are multiple, constructed, and holistic, the second is that knower and known are interactive, inseparable, the third is only time and context bound working hypotheses(idiographic statements) are possible, the forth is all entities are in a state of mutual simultaneous shaping, so that it is impossible to distinguish causes from effects and the last is that inquiry is value-bound. Purposive sampling was conducted as a sampling. 20 subjects who experienced pain over 10 years, lived in middle-sized city and big city in Korea, and 17 women and 3 men. The subject's age was from 32 to 62 (average 48.8), all were married, living with their spouse and children, except two-one divorced and the other widow before they became ill. I collected data using In depth structured interview. I had interviews two or three times with each subject, and the interviews were conducted at each subject's home. Each interview lasted about two hours an average. A recording was taken with the consent of the subject. I used inductive data analysis-such as unitizing and categorizing. unitizing is a process of coding, whereby raw data are systematically transformed and aggregated into units. Categorizing is a process wherby previously unitized data are organized into categories that provide descriptive or inferential information about the context or setting from which the units were derived. This process is used constant comparative method. The pain controlling process is composed of behavior of pain control. The behaviors of pain control are rearranging of ADL, hiddening role conflict, balancing treatment, and changing social relation. Rearranging of ADL includes diet management, sleep management, and the adjustment of daily life activities. The subjects try to rearrange their daily activities by modified style of motions, rearranging time span & range of activities, using auxillary facilities, and getting help in order to keep on the pace of daily life. Hiddening role conflict means to reduce conflicts between sick role and their role as a family member. In this process, the subjects use two modes, one is to control the pain complaints, and the other is to internalize the value which is to stay home is good for caring her children and being a good mother. To control pain complaints is done by 'enduring', 'understanding' the other family members, or making them undersood in order to reduce pain. Balancing treatment is composed of two aspects. One is to keep the pain within the endurable level, the other is to keep in touch with medical personnel in order to get the information of treatment and emotional support. Changing social relation is made by information seeking and sharing, formation of mutual support relation, and finally simplification of social relationships. The subjects simplify their social relationships by refraining from relations with someone who makes them physically and psychologically strained. In particular the subjects are apt to avoid contact with in-laws, and the change of relation to in-laws results in lessening the family boundary. In the course of this process, they confront the crisis of family confict result in family dissolution. This crisis is related to the threat of self-existence. Findings from this study contribute to understanding the chronic pain experience. To advance this study, we should compare this result with other cases in different cultural contexts. I think to interpret these results, korean cultural background should be considered. Especially the different family concept, more broader family members and kinship network, and the traditional medical knowledge influences patients' behavior.

  • PDF