• Title/Summary/Keyword: urine collection

Search Result 132, Processing Time 0.02 seconds

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

Pharmacokinetic Study of Isoniazid and Rifampicin in Healthy Korean Volunteers (정상 한국인에서의 Isoniazid와 Rifampicin 약동학 연구)

  • Chung, Man-Pyo;Kim, Ho-Cheol;Suh, Gee-Young;Park, Jeong-Woong;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.;Han, Yong-Chol;Park, Hyo-Jung;Kim, Myoung-Min;Choi, Kyung-Eob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.479-492
    • /
    • 1997
  • Background : Isoniazid(INH) and rifampicin(RFP) are potent antituberculous drugs which have made tuberculous disease become decreasing. In Korea, prescribed doses of INH and RFP have been different from those recommended by American Thoracic Society. In fact they were determined by clinical experience rather than by scientific basis. Even there has been. few reports about pharmacokintic parameters of INH and RFP in healthy Koreans. Method : Oral pharmacokinetics of INH were studied in 22 healthy native Koreans after administration of 300 mg and 400mg of INH to each same person successively at least 2 weeks apart. After an overnight fast, subjects received medication and blood samples were drawn at scheduled times over a 24-hour period. Urine collection was also done for 24 hours. Pharmacokinetics of RFP were studied in 20 subjects in a same fashion with 450mg and 600mg of RFP. Plasma and urinary concentrations of INH and RFP were determined by high-performance liquid chromatography(HPLC). Results : Time to reach peak serum concentration (Tmax) of INH was $1.05{\pm}0.34\;hrs$ at 300mg dose and $0.98{\pm}0.59\;hrs$ at 400mg dose. Half-life was $2.49{\pm}0.88\;hrs$ and $2.80{\pm}0.75\;hrs$, respectively. They were not different significantly(p > 0.05). Peak serum concentration(Cmax) after administration of 400mg of INH was $7.14{\pm}1.95mcg/mL$ which was significantly higher than Cmax ($4.37{\pm}1.28mcg/mL$) by 300mg of INH(p < 0.01). Total clearance(CLtot) of INH at 300mg dose was $26.76{\pm}11.80mL/hr$. At 400mg dose it was $21.09{\pm}8.31mL/hr$ which was significantly lower(p < 0.01) than by 300mg dose. While renal clearance(CLr) was not different among two groups, nonrenal clearance(CLnr) at 400mg dose ($18.18{\pm}8.36mL/hr$) was significantly lower than CLnr ($23.71{\pm}11.52mL/hr$) by 300mg dose(p < 0.01). Tmax of RFP was $1.11{\pm}0.41\;hrs$ at 450mg dose and $1.15{\pm}0.43\;hrs$ at 600mg dose. Half-life was $4.20{\pm}0.73\;hrs$ and $4.95{\pm}2.25\;hrs$, respectively. They were not different significantly(p > 0.05). Cmax after administration of 600mg of RFP was $13.61{\pm}3.43mcg/mL$ which was significantly higher than Cmax($10.12{\pm}2.25mcg/mL$) by 450mg of RFP(p < 0.01). CLtot of RFP at 450mg dose was $7.60{\pm}1.34mL/hr$. At 600mg dose it was $7.05{\pm}1.20mL/hr$ which was significantly lower(p < 0.05) than by 450mg dose. While CLr was not different among two groups, CLnr at 600 mg dose($5.36{\pm}1.20mL/hr$) was significantly lower than CLnr($6.19{\pm}1.56mL/hr$) by 450mg dose(p < 0.01). Conclusion : Considering Cmax and CLnr, 300mg, of INH and 450mg RFP might be sufficient doses for the treatment of tuberculosis in Koreans. But it remains to be clarified in the patients with tuberculosis.

  • PDF