• Title/Summary/Keyword: urinary bladder smooth muscle

Search Result 13, Processing Time 0.034 seconds

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

Action of P2X-purinoceptor on urinary bladder smooth muscle of pig (돼지 방광 평활근에 있어서 P2X-purinoceptor의 작용)

  • Park, Sang-eun;Hong, Yong-geun;Shim, Cheol-soo;Jeon, Seok-cheol;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.103-110
    • /
    • 1997
  • The experiments were carried out to elucidate the relationships between neurogenic effects of electrical transmural nerve stimulation and effect of adenosine 5'-triphosphate(ATP) to purinoceptor on the urinary bladder smooth muscle of pig. The results were as follows : 1. The contractile responses induced by electrical transmural nerve stimulation(10V or 20V, 0.5msec, 10sec) were the frequency(2~64Hz) dependent manner. 2. The contractile response induced by carbachol was responsed with a dose-dependent manner and the maximum contractility was $10^{-4}M$. 3. The contractile responses induced by ATP were increased in a dose-dependent manner ($10^{-5}{\sim}10^{-3}M$). 4. The contractile response induced by electrical transmural nerve stimulation(10V, 2~32Hz, 0.5msec, 10sec) was partially blocked by the treatment with atropine($10^{-5}M$), and was powerfully inhibited by 3 times of addition with ATP($10^{-5}M$). 5. The contractile response induced by electrical transmural nerve stimulation(10V, 2~32Hz, 0.5msec, 10sec) was partially blocked by the treatment with atropine($10^{-5}M$), and was completely blocked by the desensitization of the $P_{2X}$-purinoceptor using ${\alpha}$, ${\beta}$-methylene ATP($5{\times}10^{-5}M$). These results suggest that purinergic nerve was innervated, and ATP and acetylcholine was released by the electrical transmural nerve stimulation in urinary bladder smooth muscle of pig.

  • PDF

Myoplasmic [$Ca^{2+}$], Crossbridge Phosphorylation and Latch in Rabbit Bladder Smooth Muscle

  • Kim, Young-Don;Cho, Min-Hyung;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • Tonic smooth muscle exhibit the latch phenomenon: high force at low myosin regulatory light chains (MRLC) phosphorylation, shortening velocity (Vo), and energy consumption. However, the kinetics of MRLC phosphorylation and cellular activation in phasic smooth muscle are unknown. The present study was to determine whether $Ca^{2+}$-stimulated MRLC phosphorylation could suffice to explain the agonist- or high $K^+$-induced contraction in a fast, phasic smooth muscle. We measured myoplasmic [$Ca^{2+}$], MRLC phosphorylation, half-time after step-shortening (a measure of Vo) and contractile stress in rabbit urinary bladder strips. High $K^+$-induced contractions were phasic at both $22^{\circ}C$ and $37^{\circ}C$: myoplasmic [$Ca^{2+}$], MRLC phosphorylation, 1/half-time, and contractile stress increased transiently and then all decreased to intermediate values. Carbachol (CCh)-induced contractions exhibited latch at $37^{\circ}C$: stress was maintained at high levels despite decreasing myoplasmic [$Ca^{2+}$], MRLC phosphorylation, and 1/half-time. At $22^{\circ}C$ CCh induced sustained elevations in all parameters. 1/half-time depended on both myoplasmic [$Ca^{2+}$] and MRLC phosphorylation. The steady-state dependence of stress on MRLC phosphorylation was very steep at $37^{\circ}C$ in the CCh- or $K^+$-depolarized tissue and reduced temperature flattend the dependence of stress on MRLC phosphorylation compared to $37^{\circ}C$. These data suggest that phasic smooth muscle also exhibits latch behavior and latch is less prominent at lower temperature.

Spontaneous Electrical Activity of Cultured Interstitial Cells of Cajal from Mouse Urinary Bladder

  • Kim, Sun-Ouck;Jeong, Han-Seong;Jang, Sujeong;Wu, Mei-Jin;Park, Jong Kyu;Jiao, Han-Yi;Jun, Jae Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.531-536
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) from the urinary bladder regulate detrusor smooth muscle activities. We cultured ICCs from the urinary bladder of mice and performed patch clamp and intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) imaging to investigate whether cultured ICCs can be a valuable tool for cellular functional studies. The cultured ICCs displayed two types of spontaneous electrical activities which are similar to those recorded in intact bladder tissues. Spontaneous electrical activities of cultured ICCs were nifedipine-sensitive. Carbachol and ATP, both excitatory neurotransmitters in the urinary bladder, depolarized the membrane and increased the frequency of spike potentials. Carbachol increased $[Ca^{2+}]_i$ oscillations and basal $Ca^{2+}$ levels, which were blocked by atropine. These results suggest that cultured ICCs from the urinary bladder retain rhythmic phenotypes similar to the spontaneous electrical activities recorded from the intact urinary bladder. Therefore, we suggest that cultured ICCs from the urinary bladder may be useful for cellular and molecular studies of ICCs.

A Novel Pathway Underlying the Inhibitory Effects of Melatonin on Isolated Rat Urinary Bladder Contraction

  • Han, June-Hyun;Chang, In-Ho;Myung, Soon-Chul;Lee, Moo-Yeol;Kim, Won-Yong;Lee, Seo-Yeon;Lee, Shin-Young;Lee, Seung-Wook;Kim, Kyung-Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • The aim of the present study was to elucidate the direct effects of melatonin on bladder activity and to determine the mechanisms responsible for the detrusor activity of melatonin in the isolated rat bladder. We evaluated the effects of melatonin on the contractions induced by phenylephrine (PE), acetylcholine (ACh), bethanechol (BCh), KCl, and electrical field stimulation (EFS) in 20 detrusor smooth muscle samples from Sprague-Dawley rats. To determine the mechanisms underlying the inhibitory responses to melatonin, melatonin-pretreated muscle strips were exposed to a calcium channel antagonist (verapamil), three potassium channel blockers [tetraethyl ammonium (TEA), 4-aminopyridine (4-AP), and glibenclamide], a direct voltage-dependent calcium channel opener (Bay K 8644), and a specific calcium/calmodulin-dependent kinase II (CaMKII) inhibitor (KN-93). Melatonin pretreatment ($10^{-8}{\sim}10^{-6}M$) decreased the contractile responses induced by PE ($10^{-9}{\sim}10^{-4}M$) and Ach ($10^{-9}{\sim}10^{-4}M$) in a dose-dependent manner. Melatonin ($10^{-7}M$) also blocked contraction induced by high KCl ($[KCl]_{ECF}$; 35 mM, 70 mM, 105 mM, and 140 mM) and EFS. Melatonin ($10^{-7}M$) potentiated the relaxation response of the strips by verapamil, but other potassium channel blockers did not change melatonin activity. Melatonin pretreatment significantly decreased contractile responses induced by Bay K 8644 ($10^{-11}{\sim}10^{-7}M$). KN-93 enhanced melatonin-induced relaxation. The present results suggest that melatonin can inhibit bladder smooth muscle contraction through a voltage-dependent, calcium-antagonistic mechanism and through the inhibition of the calmodulin/CaMKII system.

In Vitro Pharmacological Characteristics of SKP-450, A Novel $K^+$ Channel Opener, in Non-Vascular Smooth Muscles in Comparison with Levcromakalim (비-혈관평활근에서 새로운 $K^+$ 통로 개방제인 SKP-450의 약리학적 작용의 특성-Levcromakalim의 작용과 비교)

  • Park, Ji-Young;Kim, Hyun-Hee;Yoo, Sung-Eun;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.759-767
    • /
    • 1997
  • In the present study, we characterized the non-vascular smooth muscle relaxant effects of a novel benzoyran derivative ,SKP-450 (2-[2'(1',3'-dioxolone)-2-methyl-4- (2'-oxo-1'-pyrrolidinyl) -6-nitro-2H-1- benzopyran) and its metabolite, SKP-310, in comparison with levcromakalim (LCRK). In the rat stomach fundus, the spontaneous motility stimulated by $10^{-6.5}\;M$ bethanechol was completely eliminated not only by $10^{-7}\;M$ SKP-450 but also by $10^{-6}\;M$ LCRK, which were blocked by $10^{-6}\;M$ glibenclamide. The inhibitory effect of SKP-450 $pD_2,\;3.94{\pm}0.66)$ was much less than LCRK $(pD2,\;5.73{\pm}0.38,\;p<0.05)$. In the bethanechol $(10{-6.5 }\;M)-stimulated$ urinary bladder, the tonus was decreased in association with elimination of spontaneous motility by $10^{-7}\;M$ M SKP-450 and $10^{-6}\;M\;LCRK\;(pD2,\;6.77{\pm}0.06)\;(P<0.05)$, which were inhibitable by $10^{-6}\;M$ glibenclamide. The inhibitory effect of SKP-450 $(pD2,\;7.66{\pm}0.05)$ was significantly more potent than that of LCRK $(pD2,\;6.77{\pm}0.06,\;p<0.05)$. In the rat uterus stimulated by $PGF_{2\alpha}\;(10^{-7}\;M)$, both increased tonus and spontaneous motility were eliminated by $10^{-6}\;M$ LCRK with slight depression of the tonus, but not by SKP-450 $(10^{-5}\;M)$. The stimulated trachea of guinea-pig by $10^{-6.5}\;M$ bethanechol was moderately suppressed by SKP-450 $(10^{-6}{sim}10^{-5}\;M)$ but little by SKP-310. In association with the relaxant effects, SKP-450 $(10^{-6}\;M)$ and LCRK $(10^{-5}\;M)$ caused a significant stimulation of the $^{86}Rb$ efflux from rat urinary bladder and stomach fundus, which were antagonized by $10^{-5}\;M$ glibenclamide, whereas the $K^+$ channel openers could not exert a stimulation of the $^{86}Rb$ efflux from rat uterus. In conclusion, it is suggested that SKP-450 exerts potent relaxant effects on the urinary bladder detrusor muscle and duodenum, whereas it shows much less effect on stomach fundus and uterus as contrasted to LCRK.

  • PDF

Interaction of Imipramine and $K^+$ Channel Blockers on Detrusor Muscle Strips Isolated from Canine Urinary Bladder (개의 적출방광 평활근에서 Imipramine과 $K^+$ 통로 봉쇄제와의 상호작용)

  • Huh, Joun-Young;Choi, Eun-Mee;Choi, Hyoung-Chul;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.195-206
    • /
    • 1995
  • The study was undertaken to examine the possibility of the involvement of $K^+$ channels in the mechanism of relaxant-action of imipramine on the isolated canine detrusor muscle strips. Canine urinary bladder were isolated, and smooth muscle strips of 15 mm long and 2 mm wide from the mid-portion of anterior wall were made in the Tyrode solution of $0{\sim}4^{\circ}C$. The strips were prepared for isometric myography in Biancani's isolated muscle chamber containing 1 ml of Tyrode solution, which was maintained with pH 7.4 by aeration with $95%\;O_2/5%CO_2\;at\;37^{\circ}C$. RP 52891, a non-specific $K^+$ channel opener, concentration-dependently suppressed the spontaneous phasic contractions of the detrusor strips. Imipramine, a tricyclic antidepressant, also reduced the spontaneous contractions in a concentration-dependent manner. RP 52891 was more potent than imipramine(p<0.05), and Imipramine was more efficient than RP 52891(p<0.05).Procaine, a voltage-dependent $K^+$ channel blocker, glibenclamide, an ATP-dependent $K^+$ channel blocker, and apamin, a calcium-dependent $K^+$ channel blocker antagonized the relaxant effect of RP 52891, but not of imipramine. Imipramine reduced the electric field stimulation (EFS) -induced contractions concentration-dependently. None of the $K^+$ channel blockers employed for this study, procaine, glibenclamide or apamin antagonized the inhibitory action of imipramine on the EFS-induced contraction. These results suggest that in canine detrusor, the $K^+$ channels of the characteristics of voltage-dependent, ATP-dependent and/or calcium-dependent are exist, and the inhibitory action of imipramine on the contractility of the detrusor is independent from the $K^+$ channels.

  • PDF

Mode of Inhibitory Action of Amitriptyline on Carbachol-Induced Contraction of Isolated Rabbit Detrusor Muscle

  • Gill, Won-Sik;Shin, Beong-Ho;Kim, Won-Jae;Jeong, Han-Seong
    • The Korean Journal of Physiology
    • /
    • v.26 no.2
    • /
    • pp.137-141
    • /
    • 1992
  • The present study was aimed at elucidating the mode of inhibitory action of tricyclic antidepressants on the smooth muscle. Effects of amitriptyline on the isolated detrusor muscle strips of the urinary bladder of the rabbit were examined. The spontaneous rhythmic movement of the muscle preparation was frequently observed, which was decreased or abolished by addition of amitriptyline $(10^{-5}{\sim}10^{-3}\;M)$. The muscle preparation responded with contraction dose dependently to carbachol, of which dose response curve shifted to the right in the presence of either amitriptyline or atropine. However, amitriptyline produced a nonparallel shift, whereas atropine caused a parallel one. In calcium free medium, the contraction response to carbachol was markedly decreased, which was resumed by the addition of $CaCl_2$ (2.5mM), but not in the presence of either amitriptyline or nifedipine. KCI (60 mM) produced a potent contraction, which was abolished in the presence of amitriptyline or nifedipine. These results suggest that amitriptyline, unlike atropine, not only acts as a noncompetitive antagonist at cholinergic muscarine receptors but also inhibits Ca-influx through the muscle cell membrane.

  • PDF

Urethral Leiomyoma Complicated with Lower Urinary Tract Obstruction in a Dog (개에서 요도 평활근종에 의한 하부 비뇨기계 폐색 증례)

  • Hong, Kyung-Hwa;Kim, Ki-Sik;Lee, Hye-Yeon;Choi, Ji-Hye
    • Journal of Veterinary Clinics
    • /
    • v.29 no.2
    • /
    • pp.181-185
    • /
    • 2012
  • An 11-year-old, intact female Shihtzu showing anuria was diagnosed as a urethral leiomyoma. The tumor occupied and obstructed the urethral lumen. In this report, the urethral tumor and secondary obstruction could be diagnosed via ultrasonography and contrast study such as excretory urography and voiding urethrography. Ultrasonography revealed a hypoechoic, demarcated urethral mass in proximal urethra. Contrast study confirmed the urethral obstruction and ruled out the expansion of the tumor into the urinary bladder. The clinical signs of the dog were completely resolved after removing the urethral mass and urethral anastomosis. Leiomyoma is a benign smooth muscle tumor, and rarely reported in lower urinary tract.

Effect of Imipramine on the Contractility of Single Cells Isolated from Canine Detrusor (Imipramine이 배뇨근 세포의 수축성에 미치는 직접작용)

  • Huh, Chan-Wook;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.2
    • /
    • pp.293-302
    • /
    • 1994
  • The objective of this study was to establish a good methodology to isolate single smooth muscle cells that are alive and respond properly to pharmacological agents. Canine urinary bladders were employed as the source of single cells, and acetylcholine, atropine and imipramine were used as indicators of pharmacological responsiveness. Imipramine, an antidepressant drug exhibited the anticholinergic and calcium antagonizing properties on rat detrusor muscle. To establish a control value for a further experiment to elucidate the mechanism of action of imipramine on detrusor muscle, we measured the concentration-response of single cells to acetylcholine in the presesnce of imipramine by length of the cells and compared the result with the response in the presence of atropine. Tiny chops of smooth muscle taken from anesthetized canine urinary bladder were incubated in collagenase solution at $36^{\circ}C$ for 17-20 minutes. The collagenase solution included collagenase 1.2 mg/ml, soybean tryspin inhibitor 0.08 mg/ml, bovine serum albumin 2% in 10 ml Krebs-Henseleit buffer solution aerated with a consistent breeze of 95/5% $O_2/CO_2$, to maintain the pH at 7.4. After washing with plain K-H solution on 450 mesh, cells were dissociated from the digested tissue for 12-15 minutes. Cell suspension was transfered in 5 ml test tubes and acetylcholine was added for the final concentration to be $10^{-14}M{\sim}10^{-9}M$. To find the optimal time to fix the cells to determine the contractile responses, 1% acrolein was added 5, 10, 20, 30, 60 and 120 seconds after the administration of ACh. The length of cells fixed by acrolein were measured by microscaler via CCTV camera on phaes-contrast microscope. The average length of 50 cells from a slide glass was taken as the value of a sample at the very concentration point. Single cells were isolated from canine detrusor. The length of untreated cells varied from 82 ${\mu}m$ to 94 ${\mu}m$. The maximal response to actylcholine $10^{-9}M$ was accomplished within 5 seconds of exposure, and the shortening was $19{\pm}3$%. Atropine reduced the contraction of the cells concentration-dependently. Imipramine which exerts a cholinergic blocking action on some smooth muscles also reduced the contraction concentration-dependently and by a similar pattern as atropine. These findings document that imipramine may exerts a cholinergic blocking activity in the single smooth muscle cells isolated from canine urinary bladder.

  • PDF