• Title/Summary/Keyword: ureG

Search Result 18, Processing Time 0.021 seconds

NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE (Klebsiella aerogenes Urease로의 닉켈의 도입)

  • Lee, Mann-Hyung-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF

Purification, Characterization and Cellular Localization of Klebsiella aerogenes UreG Protein

  • Lee, Mann-Hyung
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.311-315
    • /
    • 1995
  • The K. aerogenes ureal gene product was previously shown to facilitate assembly of the crease metallocenter (Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowicz, Y., and Hausinger, R. P. (1992) J. Bacteriol. 174, 4324-4330). UreG protein has now been purified and characterized. Although the protein is predicted to possess a putative NTP-binding P-loop motif, equilibrium dialysis studies showed negative results. Immunogold electron microscopic studies using polyclonal antibodies directed against UreG protein confirm that UreG is located in the cytoplasm as predicted in the DNA sequence.

  • PDF

Expession of the Recombinant Klebsiella aerognes UreF Protein as a MalE Fusion

  • Kim, Keun-Young;Yang, Chae-Ha;Lee, Mann-Hyung
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.274-278
    • /
    • 1999
  • Expression of the active urease of the enterobacterium, Klebsiella aerogens, requires the presence of the accessory genes (ureD, ureE, ureF, and ureG) in addition to the three structural genes (ureA, ureB, and ureC). These accessory genes are involved in functional assembly of the nickel-metallocenter for the enzyme. Characterization of ureF gene has been hindered, however, since the UreF protein is produced in only minute amount compared to other urease gene products. In order to overexpress the ureF gene, a recombinant pMAL-UreF plasmid was constructed from which the UreF was produced as a fusion with maltose-binding protein. The MBP-UreF fusion protein was purified by using an amylose-affinity column chromatography followed by an anion exchange column chromatography. Polyclonal antibodies raised against the fusion protein were purified and shown to specifically recognize both MBP and UreF peptides. The UreF protein was shown to be unstable when separated from MBP by digestion with factor Xa.

  • PDF

Activation of Urease Apoprotein of Helicobacter pylori

  • Cho, Myung-Je;Lee, Woo-Kon;Song, Jae-Young;An, Young-Sook;Choi, Sang-Haeng;Choi, Yeo-Jeong;Park, Seong-Gyu;Choi, Mi-Young;Baik, Seung-Chul;Lee, Byung-Sang;Rhee, Kwang-Ho
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.533-542
    • /
    • 1999
  • H. pylori produces urease abundantly amounting to 6% of total protein of bacterial mass. Urease genes are composed of a cluster of 9 genes of ureC, ureD, ureA, ureB, ureI, ureE, ureF, ureG, ureH. Production of H. pylori urease in E. coli was studied with genetic cotransformation. Structural genes ureA and ureB produce urease apoprotein in E. coli but the apoprotein has no enzymatic activity. ureC and ureD do not affect urease production nor enzyme activity ureF, ureG, and ureH are essential to produce the catalytically active H. pylori urease of structural genes (ureA and ureB) in E.coli. The kinetics of activation of H. pylori urease apoprotein were examined to understand the production of active H. pylori urease. Activation of H. pylori urease apoprotein, pH dependency, reversibility of $CO_2$ binding, irreversibility of $CO_2$ and $Ni^{2+}$ incorporation, and $CO_2$ dependency of initial rate of urease activity have been observed in vitro. The intrinsic reactivity (ko) for carbamylation of urease apoprotein co expressed with accessory genes was 17-fold greater than that of urease apoprotein expressed without accessory genes. It is concluded that accessory genes function in maximizing the carbamylating deprotonated ${\varepsilon}$-amino group of Lys 219 of urease B subunit and metallocenter of urease apoprotein is supposed to be assembled by reaction of a deprotonated protein side chain with an activating $CO_2$ molecule to generate ligands that facilitate productive nickel binding.

  • PDF

Effect of the Urease Accessory Genes on Activation of the Helicobacter pylori Urease Apoprotein

  • Park, Jeong-Uck;Song, Jae-Young;Kwon, Young-Cheol;Chung, Mi-Ja;Jun, Jin-Su;Park, Jeong-Won;Park, Seung-Gyu;Hwang, Hyang-Ran;Choi, Sang-Haeng;Baik, Seung-Chul;Kang, Hyung-Lyun;Youn, Hee-Shang;Lee, Woo-Kon;Cho, Myung-Je;Rhee, Kwang-Ho
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.371-377
    • /
    • 2005
  • The roles that accessory gene products play in activating the Helicobacter pylori urease apoprotein were examined. The activity of the urease apoprotein increased in the following order when it was expressed with the accessory genes: ureG < ureGH < ureFGH < ureEFGH < ureIEFGH. Moreover, stepwise additions of ureE and ureI to ureFGH significantly increased urease activity. Urease apoproteins coexpressed with ureFGH, ureEFGH, and ureIEFGH had similar low chymotrypsin susceptibilities. In vivo and in vitro activation studies showed that the cooperative effect of the accessory proteins involved processes in which the UreFGH complex, UreE, and UreI were implicated. Thus, the UreFGH complex may serve to alter the conformation of the apoprotein into one that is more competent to assemble a stable metallocenter, and that facilitates cooperative effects.

Cloning and Characterization of the Urease Gene Cluster of Streptococcus vestibularis ATCC49124

  • Kim Geun-Young;Lee Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.286-290
    • /
    • 2006
  • A genomic library of Streptococcus vestibularis ATCC49124 was constructed in an E. coli plasmid vector, and the urease-positive transformants harboring the urease gene cluster were isolated on Christensen-urea agar plates. The minimal DNA region required for urease activity was located in a 5.6 kb DNA fragment, and a DNA sequence analysis revealed the presence of a partial ureI gene and seven complete open reading frames, corresponding to ureA, B, C, E, F, G, and D, respectively. The nucleotide sequence over the entire ure gene cluster and 3'-end flanking region of S. vestibularis was up to 95% identical to that of S. salivarius, another closely related oral bacterium, and S. thermophilus, isolated from dairy products. The predicted amino acid sequences for the structural peptides were 98-100% identical to the corresponding peptides in S. salivarius and S. thermophilus, respectively, whereas those for the accessory proteins were 96-100% identical. The recombinant E. coli strain containing the S. vestibularis ure gene cluster expressed a high level of the functional urease holoenzyme when grown in a medium supplemented with 1 mM nickel chloride. The enzyme was purified over 49-fold by using DEAE-Sepharose FF, Superdex HR 200, and Mono-Q HR 5/5 column chromatography. The specific activity of the purified enzyme was 2,019 U/mg, and the Michaelis constant ($K_{m}$) of the enzyme was estimated to be 1.4 mM urea. A Superose 6HR gel filtration chromatography study demonstrated that the native molecular weight was about 196 kDa.

Genetic Characterization of the Urease Gene Cluster in Photobacterium sp. Strain HA-2 Isolated from Seawater (해수에서 분리한 Photobacterium sp. Strain HA-2가 보유하는 요소분해효소 유전자의 유전적 특징)

  • Kim, Tae Ok;Park, Kwon Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.639-643
    • /
    • 2015
  • In this study, we cloned and sequenced the 15,204-bp DNA region containing the gene cluster for urease production from the chromosome of the environmental Photobacterium sp. strain HA-2. We identified 15 open reading frames (ORFs) and the G+C content was 40.3%. The urease gene cluster of Photobacterium sp. strain HA-2 consisted of seven genes, namely, ureDABCEF and ureG. There were five ORFs of urease genes in the opposite direction, which were homologous to the nickel transport operons (nik) of Vibrio parahaemolyticus and Escherichia coli. The genetic organization and sequences of the urease genes of Photobacterium sp. strain HA-2 resembled those found in Vibrio fischeri and V. parahaemolyticus.

In Vitro Anti-Helicobacter pylori Activity of Ethanol Extract of Sohamhyoongtang and Coptidis Rhizoma Total Alkaloids (소함흉탕 에탄올 추출물 및 황련 알칼로이드의 헬리코박터 파이로리에 대한 항균활성)

  • Lee, BaWool;Choi, MyungSook;Yim, DongSool;Choi, SungSook
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.168-173
    • /
    • 2014
  • The aim of this study was to evaluate the anti-helicobacter activity of the ethanol extract of Sohamhyoongtang (Coptidis Rhizoma, Pinelliae Tuber and Trichosanthis Semen) and Coptidis Rhizoma total alkaloids, which is one of the components of Sohamhyoongtang. Crude ethanol extract of Sohamhyoongtang (ESHHT) and Coptidis Rhizoma total alkaloids (CRTA) were used for this experiment. Five different types of H. pylori (including H. pylori 26695) were used as test strain. To determine anti-helicobacter activity, minimum inhibitory concentration (MIC) was determined by agar dilution method. The effect of ESHHT and CRTA on the gene expression of H. pylori was investigated by quantitative realtime-PCR (qRT-PCR). MICs of ESHHT against five H. pylori strains were $250{\sim}500{\mu}g/ml$ and MICs of CRTA against five H. pylori strains were $50{\sim}200{\mu}g/ml$. Four representative virulence genes of H. pylori, cagA, ureA, ureB and ureI were tested as target genes for qRT-PCR. According to the qRT-PCR results, both ESHHT and CRTA markedly repressed the expression of cagA gene of H. pylori 26695 (6.91 and 20 folds respecively). These results showed that the ESHHT and CRTA demonstrated antihelicobacter properties, suggesting their potential use in gastritis or duodenal ulcer.

Participation of SRE4, an URE1 Enhancer Core Sequence, in the Sterol-Mediated Transcriptional Upregulation of the Human Apolipoprotein E Gene

  • Min, Jung-Hwa;Paik, Young-Ki
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.565-571
    • /
    • 1998
  • The expression of the endogenous human apolipoprotein(apo)E gene was significantly induced when HepG2 cells were treated with exogenous 25-hydroxy-cholesterol. This sterol-mediated apoE gene upregulation appears to require the participation of a positive element for the apoE gene transcription (PET) ( -169/ -140), a core sequence of upstream regulatory element (URE)1 enhancer of the human apoE gene. This PET was renamed as sterol regulatory element (SRE)4 based on its new role as a sensor for the level of intracellular sterol. Furthermore, a gel mobility shift analysis showed that binding activity of the SRE4 binding protein (BP) obtained from HepG2 cells was induced by sterol treatment, while that from either MCF7 or BT20 cells remained unchanged. Binding activity of SRE4BP was also induced in mouse macrophage cells, J774A.1, by sterol treatment, but it was drastically reduced when cells were subjected to treatment of AY-9944, a potent inhibitor for sterol synthesis. However, binding activity of Spl, which is a co-binding protein to the SRE4 region, remained the same in either condition, suggesting that SRE4BP (formally known as PETBP) may be mainly responsible for the sterol-mediated regulation of the apoE gene expression. Deletion analysis of the core binding site of SRE4BP by gel mobility shift assays showed that the minimal sequence of the SRE4BP binding appears to reside between -157 and -140, confirming the identity of SRE4 with the previously determined core sequence of URE1.

  • PDF

The AC impedance of $LiM_{y}Mn_{2-y}O_{4}$cathode material by charge and discharge temperature (충방전 온도에 따른 $LiM_{y}Mn_{2-y}O_{4}$정극 활물질의 임피던스 특성 분석)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.351-354
    • /
    • 2000
  • AC impedance of LiM $n_2$ $O_4$ and LiM $g_{0.1}$M $n_{1.9}$ $O_4$ samples have been studied at various temperature with charge-discharge test. AC impedance of LiM $n_2$ $O_4$ measured at -2$0^{\circ}C$, room temperature and 5$0^{\circ}C$ revealed that initial impedance before charge-discharge test was gradually decreased and become small by becoming law temperature. It indicates that the Li ion diffusion and the transfer resistance of the cathode are related to the temperature of cycling. Impedance at high temperature was suddenly increased because Mn dissolution and decomposition of electrolyte had been increased during cycling, compared to impedance at low temperature. Therefore, charge-discharge capacity was suddenly decreased at high but was slowly at low. In LiM $g_{0.1}$M $n_{1.9}$ $O_4$, impedance and capacity were stability at room temperature than there at 5$0^{\circ}C$, too. Initial impedance at 5$0^{\circ}C$ before charge-discharge test was small and impedance was suddenly increased during cycling than that at room temperature.ure.ure.

  • PDF