• 제목/요약/키워드: urban water management

검색결과 685건 처리시간 0.034초

오염총량관리제도의 TOC 목표수질 설정 방안 (Establishment of Target Water Quality for TOC of Total Water Load Management System)

  • 김용삼;이은정
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.520-538
    • /
    • 2019
  • In this study, it was proposed that a method of setting the target water quality for TOC using the watershed model and the load duration curves to manage non-biodegradable organics in the total water load management system. To simulate runoff and water quality of the watershed, the HSPF model is used which is appropriate for urban and rural areas. Additionally, the load duration curve is used to reflect the variable water quality correlated with various river flow rates in preparing the TMDL plans in the U.S. First, the model was constructed by inputting the loads calculated from the pollutant sources in 2015. After the calibration and verification process, the water quality by flow conditions was analyzed from the BOD and TOC simulation results. When the BOD achieved the target water quality by inputting the target year loads for 2020, the median and average values of TOC were proposed for the target water quality. The provisional method of TOC target water quality for the management of non-biodegradable organics, which is one of the challenges of the total water load management system, was considered. In the future, it is expected to be used as basic data for the conversion of BOD into TOC in the total water load management system.

Research on the construction concept and general framework of Smart Water Resource

  • Tian, Yu;Li, JianGuo;Jiang, Yun-zhong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.216-216
    • /
    • 2015
  • Frequent hydro-meteorological events caused by global climate change and human exacerbate activities, make the water resource problem more complicated. The increasing speed urbanization brings a significant impact on the city flood control and security, water supply safety, water ecological security, water environment safety and the water engineering security in China, and puts forward higher requirements to urban water integrated management, undoubtedly which become the biggest obstacle for water ecological civilization construction, thus urgent requiring an advanced methods to enhance the effectiveness of the water integrated management. The other fields of smart ideas point out a development path for water resource development. The construction demand of smart water resource is expounded in the paper, combining the philosophy of modern Internet of things with the application of cloud computing technology. The concept of smart water resource is analyzed, the connotation characteristics of smart water resource is extracted, and the general model of smart water resource is refined. Then, the frame structure of smart water resource is put forward. The connotation and the overall framework of the smart water resource represent a higher level of water resource informationization development and provide a comprehensive scientific and technological support to transform water resource management from an extensive, passive, static, branch and traditional management to a fine, active, dynamic, collaborative and modern management.

  • PDF

ARIMA 모델에 의한 상수도 일일 급수량 추정에 관한 연구 (A Study on the Eltimation of Daily Urban Water Demand by ARIMA Model)

  • 이경훈;문병석;박성천
    • 한국수자원학회논문집
    • /
    • 제30권1호
    • /
    • pp.45-54
    • /
    • 1997
  • 수돗물, 송배수펌프의 운전 등 상수도시설을 합리적인 운용을 위해서는 일, 또는 시간 단위의 급수량 사용량의 추정이 필수적이다고 할 수 있다. 급수량의 추정방식은 회귀모형식 및 시계열 분석방법이 있는데, 본 연구에서는 시계열 분석방법인 ARIMA모형을 이용하여 일일 급수량을 추정하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 일일 급수량을 추정하는데 있어서 시계열장을 15, 30. 60, 90일로 나누어 각각의 시계열장에 대해 시행착오법으로 각 모형에 적용하여 최적의 시계열장을 결정하여, 상수도 일일 급수량을 추정할 수 있는 모형을 제안하고 그 유효성을 잔차분석을 통해 검증하였다. 제안된 모형식은 사고 등의 인위적인 조작(단수 등)이 가해지는 시기를 제외하고는 실측치와 모형의 추정치와의 오차율이 최대 약 12%, 평균 3% 이내로 나타나, 모형의 결과는 상수도 일일 급수량의 추정에 필요한 시설에 적용 가능하다고 판단된다.

  • PDF

발전방류구 위치변화에 따른 저수지내 탁수변화 -대청댐을 대상으로- (Effect of Hydroelectric Power Plant Discharge on the Turbidity Distribution in Dae-Cheong Dam Reservoir)

  • 서세덕;이재일;하성룡
    • 환경영향평가
    • /
    • 제20권2호
    • /
    • pp.227-234
    • /
    • 2011
  • In the study, CE-QUAL-W2 was used and its examination and correction were conducted targeting 2001 and 2003 when the condition of rainfall was contradicted. Using the proved model in 2003, a scenario was implemented with management of locations for dewatering outlets and actual data for dam management in 1987 when inflow and outflow level were almost same. In case of the scenario which the location of dewatering outlets was 5m higher than usual location, exclusion efficiency for turbid water inflow at the beginning of precipitation was good. In case of the scenario which the location of dewatering outlets was 10m lower than usual location, exclusion efficiency for excluding turbid water remained in a reservoir after the end of precipitation. However, the scenario applying dam management data in 1987, exclusion efficiency was relatively low. In the scenario, power-generating water release spot at EL.57m for first four days after the beginning of precipitation, EL.52m for 5th to 8th and EL.42m from 9th days. An analysis of the scenario reveals that both excessive days exceeded 30 NTU and average turbidity levels were decreased comparing before and after the alteration on outlets. The average turbidity levels were decreased by minimum of 55% to maximum of 70% and 30NTU exceeding days were decreased by 45 days at maximum. Also, since it could exclude most of turbid water in a reservoir before the destatifcation, the risk for turbid water evenly distributed in a reservoir along with turn-over could be decreased as well.

도시림 복원 및 관리 기술의 개발에 관한 연구 - 원식생 복원과 생물다양성 증진을 중심으로 - (A Study on the Development of Techniques for Urban Forest Restoration and Management - Focus on the Restoration of Origin Vegetation and Improvement of Biodiversity -)

  • 김귀곤;조동길;김남춘;민병미
    • 한국환경복원기술학회지
    • /
    • 제3권1호
    • /
    • pp.27-37
    • /
    • 2000
  • This study aims at restoring urban forest destructed and eliminated by industrialization, urbanization, and city development and presenting a direction to manage remaining urban forest ecologically. To this end, an experiment zone where Populus tomentiglandulosa T. Lee were selective cutted and a control zone where Populus tomentiglandulosa T. Lee were kept intact were created in Chongdam Park located in Kangnam-ku, Seoul. Then, the structural changes of herbaceous plant species, the growth of targeted woody plants, and the increase of the number of insect and bird species were examined. The conclusions reached in this study are as follows. First, for the sake of ecological restoration and management of urban forest, it is good to selective cutting. Although timing, frequency, and methods may vary depending on the features and types of urban forest, the study revealed that selective cutting contributes to the restoration speed of origin vegetation and the enhancement of biodiversity including plants and insects. Second, as for the correlations of selective cutting and the appearance of plant species, the growth of origin vegetation, and insect distribution, the study showed that the impact of meteorological environment such as brightness is much greater than that of soil environment. Third, in order to manage urban forest, tramping pressure needs to be controlled efficiently. The efficient control of tramping pressure would contribute in the appearance of herbaceous plants. It would also be beneficial in promoting biodiversity of birds by removing the impact of people using routes. Fourth, in order to enhance the overall biodiversity of urban forest, diverse environment needs to be provided. In particular, it is necessary to supply water that is insufficient in urban forest. Providing habitats such as forest wetland performs an important function to amphibians and birds that require water as well as the appearance of aquatic plants and insects. Therefore, ways to introduce water efficiently should be initiated.

  • PDF

시스템다이내믹스를 활용한 도시개발밀도의 적정성 평가 모델 구축 연구 (Establishment of the Measurement Model about the Adequate Urban Development Density using System Dynamics)

  • 전유신;문태훈
    • 한국시스템다이내믹스연구
    • /
    • 제4권2호
    • /
    • pp.71-94
    • /
    • 2003
  • The purpose of this dissertation is to build a development density control model and estimate optimum developmental density level for a sustainable urban growth management. To develop the model, system dynamics modeling approach was used. The model was developed to analyze how urban growth, transition, and decay occur depending on the interaction among population, houses, industry structure, land and urban infrastructure such as road, water supply, and sewage treatment facilities. The model was applied to Anyang city to estimate optimum density level. Extensive computer simulation was conducted to find out the maximum numbers of population, industry structure, houses, and cars that can be adequately sustained with the current Anyang city's infrastructure capacity. The computer simulation result shows that the city is overpopulated by some 90,000 people. It nab analyzed that 20% increase of existing capacity of urban infrastructure is necessary to support current population of Anyang city. To reduce the population to the adequate level whereby the current urban infrastructure can sustain, the current city regulation on floor area ratio needs be strengthened at least 20% to 35%.

  • PDF

CHARACTERIZATION OF NONPOINT SOURCES FROM URBAN RUNOFF

  • Park, Jae-Young;Jo, Young-Min;Oh, Jong-Min
    • Water Engineering Research
    • /
    • 제1권1호
    • /
    • pp.39-48
    • /
    • 2000
  • This work was completed in partial fulfillment of an on-going research ot descover the effective management of urban nonpoint sources. The current data was obtained from the area of Shingal, Kyunni-do. The investigation was are predominant soures of storm-runoff load and drainage. As a result of the investigation, the road was found to be most seriously contaminated and a significant potential source deteriorating the quality of streams and lakes in the vicinity of the town. Thus, in could be concluded that an effective and systematic cleaning technique must be developed as soon as possible and be frequently applied to the road.

  • PDF

Climate change effect on storm drainage networks by storm water management model

  • Hassan, Waqed Hammed;Nile, Basim Khalil;Al-Masody, Batul Abdullah
    • Environmental Engineering Research
    • /
    • 제22권4호
    • /
    • pp.393-400
    • /
    • 2017
  • One of the big problems facing municipalities is the management and control of urban flooding where urban drainage systems are under growing pressure due to increases in urbanization, population and changes in the climate. Urban flooding causes environmental and infrastructure damage, especially to roads, this damage increasing maintenance costs. The aim of the present study is to develop a decision support tool to identify the performance of storm networks to address future risks associated with climate change in the Middle East region and specifically, illegal sewer connections in the storm networks of Karbala city, Iraq. The storm water management model has been used to simulate Karbala's storm drainage network using continuous hourly rainfall intensity data from 2008 to 2016. The results indicate that the system is sufficient as designed before consideration of extra sewage due to an illegal sewer connection. Due to climate changes in recent years, rainfall intensity has increased reaching 33.54 mm/h, this change led to flooding in 47% of manholes. Illegal sewage will increase flooding in the storm system at this rainfall intensity from between 39% to 52%.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

강우 시 수영강 유역 내 유기물질의 특성 (Characteristics of Organic Matters in the Suyeong River During Rainfall Event)

  • 김수현;김정선;강임석
    • 한국물환경학회지
    • /
    • 제34권5호
    • /
    • pp.487-493
    • /
    • 2018
  • Urban stormwater runoff is the one of the most extensive causes of deterioration of water quality in streams in urban areas. Especially, in the Suyeong River watershed, non-point sources from urban-residential areas are the most common cause of water pollution. Also, it has been ascertained that BOD and COD as indexes of organic matter, have limitation on management of Suyeong River's water quality. In this study, changes of organic matter properties of Suyeong River from inflow of non-point source during rainfall were investigated. Fractions of organic matters were analyzed using water samples collected at two sites (Suyeong River and Oncheon Stream) during a rain event. Variations of dissolved organic carbon (DOC) concentration by rainfall were similar to flow rate change in the river. Distribution of organic matter fraction according to change of rain duration revealed that while hydrophilic component increased at initial rainfall, the hydrophobic component was similar to change in dissolved organic carbon (DOC) concentration. Also, the relative proportion of hydrophilic components in organic matter in river water increased, due to rainfall. Results of biodegradation of organic matters revealed that decomposition rate of organic matters during rainfall was higher than that of during a non-rainfall event.