• Title/Summary/Keyword: urban vulnerability

Search Result 152, Processing Time 0.026 seconds

Traffic Accident Density Models Reflecting the Characteristics of the Traffic Analysis Zone in Cheongju (존별 특성을 반영한 교통사고밀도 모형 - 청주시 사례를 중심으로 -)

  • Kim, Kyeong Yong;Beck, Tea Hun;Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.75-83
    • /
    • 2015
  • PURPOSES : This study deals with the traffic accidents classified by the traffic analysis zone. The purpose is to develop the accident density models by using zonal traffic and socioeconomic data. METHODS : The traffic accident density models are developed through multiple linear regression analysis. In this study, three multiple linear models were developed. The dependent variable was traffic accident density, which is a measure of the relative distribution of traffic accidents. The independent variables were various traffic and socioeconomic variables. CONCLUSIONS : Three traffic accident density models were developed, and all models were statistically significant. Road length, trip production volume, intersections, van ratio, and number of vehicles per person in the transportation-based model were analyzed to be positive to the accident. Residential and commercial area ratio and transportation vulnerability ratio obtained using the socioeconomic-based model were found to affect the accident. The major arterial road ratio, trip production volume, intersection, van ratio, commercial ratio, and number of companies in the integrated model were also found to be related to the accident.

Remote monitoring of urban and infrastructural areas

  • Bortoluzzi, Daniele;Casciati, Fabio;Elia, Lorenzo;Faravelli, Lucia
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.449-462
    • /
    • 2014
  • Seismically induced structural damage, as well as any damage caused by a natural catastrophic event, covers a wide area. This suggests to supervise the event consequences by vision tools. This paper reports the evolution from the results obtained by the project RADATT (RApid Damage Assessment Telematics Tool) funded by the European Commission within FP4. The aim was to supply a rapid and reliable damage detector/estimator for an area where a catastrophic event had occurred. Here, a general open-source methodology for the detection and the estimation of the damage caused by natural catastrophes is developed. The suitable available hazard and vulnerability data and satellite pictures covering the area of interest represent the required bits of information for updated telematics tools able to manage it. As a result the global damage is detected by the simple use of open source software. A case-study to a highly dense agglomerate of buildings is discussed in order to provide the main details of the proposed methodology.

Indicators for identification of urban flood vulnerability (도시홍수취약성 평가 인자 선정)

  • Lee, Gyumin;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.88-88
    • /
    • 2016
  • 최근 우리나라에서 발생한 홍수 중 많은 관심을 불러일으킨 2010년 광화문 일대와 2011년 강남역 일대 홍수의 주요 원인은 하천관리를 통하여 대응해온 지금까지의 홍수와는 달리 도시의 우수배제 기능이 높은 강도의 강우에 대응하지 못한 것으로 분석되고 있다. 도시내부에서 발생한 이 같은 홍수는 도시의 기능에 심각한 영향을 줄 수 있으며, 거주민의 안전과도 밀접하게 연관된다. 본 연구에서는 도시의 기능과 거주민의 안전을 우선적으로 고려한 홍수 취약성평가 인자를 선정하고자 한다. 기존의 여러 홍수취약성 연구들에서는 취약성을 평가함에 있어 피해금액을 기준으로 적용하는 경우가 많이 있다. 장기적인 홍수대응, 완화 정책의 구상에 있어 예상되는 피해금액은 중요한 지표라고 볼 수 있다. 그러나 이 방법으로는 도시에서 발생 가능한 피해를 모두 반영하는데 한계가 있다. 도로, 지하철, 철도 등의 교통수단이 침수되는 경우, 피해회복을 위한 비용뿐만 아니라, 도시기능에 심각한 영향을 주어 도시의 생산성, 안정성에 막대한 피해를 남길 수 있다. 따라서 피해금액의 규모에 대한 접근만으로는 도시에서 발생한 홍수에 의해 피해를 받는 취약요인을 적극적으로 반영할 수 없다. 본 연구에서는 도시홍수 피해양상과 이에 대한 대응 방법 등 홍수의 물리적 위험성 뿐 아니라 홍수와 연관된 사회적인 요인들을 반영한 취약성 평가인자를 구성하기위하여 인자간의 인과관계 등을 고려하여 인자의 범위를 규정하고 델파이 설문조사와 문헌 연구를 통하여 전문가 의견을 수집, 분석하였다. 홍수취약성에 영향을 주는 요인들을 크게 3가지 그룹으로 정리하여 도시구조물, 거주민, 위험요인으로 구분하고 각 항목별로 영향인자을 선정하였다. 결정된 인자는 2011년 홍수피해가 발생한 도림천 유역에 적용하여 홍수취약성 평가를 수행하고자 한다.

  • PDF

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city - structural aspects

  • Kappos, A.J.;Panagopoulos, G.K.;Sextos, A.G.;Papanikolaou, V.K.;Stylianidis, K.C.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.197-214
    • /
    • 2010
  • The paper presents a methodology for developing earthquake damage and loss scenarios for urban areas, as well as its application to two cities located in Mediterranean countries, Grevena (in Greece) and D$\ddot{u}$zce (in Turkey), that were struck by strong earthquakes in the recent past. After compiling the building inventory in each city, fragility curves were derived using a hybrid approach previously developed by the authors, and a series of seismic scenarios were derived based on microzonation studies that were specifically conducted for each city (see companion paper by Pitilakis et al.). The results obtained in terms of damage estimates, required restoration times and the associated costs are presented in a GIS environment. It is deemed that both the results obtained, and the overall methodology and tools developed, contribute towards the enhancement of seismic safety in the Mediterranean area (as well as other earthquake-prone regions), while they constitute a useful pre-earthquake decision-making tool for local authorities.

Urban Flood Vulnerability using AHP Method (AHP방법을 이용한 도심지 홍수취약성)

  • Hwang, Nan Hee;Park, Hee Seong;Chung, Gun Hui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.392-392
    • /
    • 2019
  • 현재 세계적으로, 홍수를 비롯한 자연재해로 인한 피해가 증가하고 있다. 우리나라의 경우, 매년 여름철에 발생하고 있는 장마로 인해 지역 곳곳에 침수피해가 심각해지고 있으며, 이에 대한 피해액 또한 증가하고 있는 실정이다. 또한, 여러 재해의 피해반복과 새롭게 반복되는 건축물 설계로 인해 지형이 바뀌고 있으며, 이로 인해, 기존의 실시된 홍수취약성 분석결과가 현실적으로 반영이 되기 힘든 상태이다. 피해를 줄이기 위해서는 변형된 환경에 맞춰 새로운 홍수취약성 분석을 실시하여 지역의 우선순위를 파악하여야 한다. 본 연구에서는 우리나라중 인구와 건물밀집도가 가장 높은 서울시 25개 구를 대상지역으로 선정하였으며, 인자들을 Pessure-State-Response (PSR) 구조로 나누었다. 압력지수(PI) 에는 유역면적, 주택 수 등 9개의 인자로, 상태지수(SI)는 연 홍수 피해액 등 4개의 인자로 선정하였으며, 대책지수(RI)의 경우에는 재정자립도, 홍수복구금액등 7개의 인자로 나누었다. 분석방법으로는 의사결정과정에서 발생할 수 있는 불확실성을 정량적으로 반영한 AHP방법과 AHP방법에 Fuzzy이론을 결합한 Fuzzy AHP 방법을 통해 각각의 결과를 비교분석하였다. 그 결과, 3개의 지수 모두 인자들의 지역별 취약순위가 바뀌었다. 본 연구의 결과를 바탕으로 홍수 방재 관련 정책 수립 등의 사업 등을 실시할 경우 해당지역에 대한 우선순위를 판단하는데 도움이 될 것으로 판단된다.

  • PDF

Investigating Regions Vulnerable to Recurring Landslide Damage Using Time Series-Based Susceptibility Analysis: Case Study for Jeolla Region, Republic of Korea

  • Ho Gul Kim
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.213-224
    • /
    • 2023
  • As abnormal weather events due to climate change continue to rise, landslide damage is also increasing. Given the substantial time and financial resources required for post-landslide recovery, it becomes imperative to formulate a proactive response plan. In this regard, landslide susceptibility analysis has emerged as a valuable tool for establishing preemptive measures against landslides. Accordingly, this study conducted an annual landslide susceptibility analysis using the history of landslides that occurred over many years in the Jeolla region, and analyzed areas with a high potential for landslides in the Jeolla region. The analysis employed an ensemble model that amalgamated 10 data-based models, aiming to mitigate uncertainties associated with a single-model approach. Furthermore, based on the cumulative data regarding landslide susceptible areas, this research identified regions vulnerable to recurring landslide damage in Jeolla region and proposed specific strategies for utilizing this information at various levels, including local government initiatives, adaptation plan development, and development approval processes. In particular, this study outlined approaches for local government utilization, the determination of adaptation plan types, and considerations for development permits. It is anticipated that this research will serve as a valuable opportunity to underscore the significance of information concerning regions vulnerable to recurring landslide damage.

Effectiveness of rocking walls system in seismic retrofit of vertically irregular RC buildings

  • Tadeh Zirakian;Omid Parvizi;Mojtaba Gorji Azandariani;David Boyajian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.543-555
    • /
    • 2024
  • This study examines the seismic vulnerability of vertically irregular reinforced concrete (RC) frame buildings, focusing on the effectiveness of retrofitting techniques such as rocking walls (RWs) in mitigating soft story mechanisms. Utilizing a seven-story residential apartment as a prototype in a high-seismicity urban area, this research performs detailed nonlinear simulations to evaluate both regular and irregular structures, both before and after retrofitting. Pushover and nonlinear time history analyses were conducted using OpenSees software, with a suite of nine ground motion records to capture diverse seismic scenarios. The findings indicate that retrofitting with RWs significantly improves seismic performance: for instance, roof displacements at the Collapse Prevention (CP) level decreased by up to 23% in the irregular structure with retrofitting compared to its non-retrofitted counterpart. Additionally, interstory drift ratios were more uniform post-retrofit, with Drift Concentration Factor (DCF) values approaching 1.0 across all performance levels, reflecting reduced variability in seismic response. The global ductility of the retrofitted buildings improved, with displacement ductility ratios increasing by up to 29%. These results underscore the effectiveness of RWs in enhancing global ductility, mitigating soft story failures, and providing a more predictable deformation pattern during seismic events. The study thus provides valuable insights into the robustness and cost-effectiveness of using rocking walls for retrofitting irregular RC buildings.

Simulation of Land Use Change by Storylines of Shared Socio-Economic Reference Pathways (사회경제 경로 시나리오에 따른 토지이용 변화 시뮬레이션)

  • KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2016
  • In an effort to establish adaptive measures for low carbon use and climate change, this study developed storylines for shared socio-economic reference pathways(SSP) and simulated change in land use for each storyline. First, cellular automata modeling was performed using past data, and a transition rule for the local characteristics of each planning area under study was derived by comparing with the results of the base year. Second, three storylines were formulated based on the hypothesized change in land use for the SSP. SSP1, the scenario for sustainability, assumed that the land was developed into a compact city, SSP2 assumed the development of a road through the middle of the land while maintaining the current situation, and SSP3 assumed unsustainable development into a fragmented world. Third, change in land use depending on planning area was predicted by integrating the SSP scenarios with cellular automata(CA) modeling. According to the results of analysis using the SSP scenarios, the urban area ratio increased slightly up to 2020 in SSP1 and up to 2030 in SSP2 and did not change any more subsequently, but it increased continuously until 2050 in SSP3 that assumed low level urban planning. These results on change in land use are expected to contribute towards making reasonable decisions and policies on climate change, and the outcomes of simulation derived from spatial downscaling, if applied to vulnerability assessment, will be useful to set the priority of policies on climate change adaptation.

An experimental investigation of flow characteristics in the tangential and the multi-stage spiral inlets (접선식 및 다단식 나선 유입구 흐름 특성의 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • The vulnerability of urban disasters is increased with the rapid urbanization and industrialization, and the extreme rainfall event is increased due to the global climate change. Urban inundation is also increased due to the extreme rainfall event beyond the capacity limit of facility for the damage prevention. The underground detention vault and the underground drain tunnel are rapidly being utilized to prevent urban inundation. Therefore, the hydraulic review and design analysis of the inlet of the underground facility are important. In this study, the water level of the approach flow according to the inflow discharge is measured and the flow characteristic of the inlet (tangential and spiral) is analyzed. For the spiral inlet, the multi-stage is introduced at the bottom of the inlet to improve the inducing vortex flow at low discharge conditions. In case of the tangential inlet, the discharging efficiency is decreased rapidly with hydraulic jump in the high flow discharge. The rising ratio of the water level in the multi-stage spiral inlet is higher than the tangential inlet, but the stable discharging efficiency is maintained at low and high discharge conditions. And the empirical formula of water level-flow discharge is derived in order to utilize inlets used in this study.

Reframing Sustainability in Consideration of Climate Change and Natural Hazards: Focusing on the U.S. Natural Hazards Mitigation Trend and Case Analysis (기후변화시대 자연재해를 고려한 지속가능개발 개념의 재정립: 미국 방재동향 및 사례 분석을 중심으로)

  • Kwon, Tae Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.801-810
    • /
    • 2013
  • The main purpose of this study is to reframe sustainability or sustainable development concept in the field of planning in consideration of climate change and natural hazards. The new concept is expected to provide a theoretical foundation for upcoming hazard mitigation measures addressing climate change. The first and main argument of the new concept is that environmental protection should be inclusive enough to address urban (or community) security from current natural hazards. The second is that the balance between structural and nonstructural mitigation measures is critical to cope more effectively with extreme natural hazards in the era of climate change and also with conflicts driven by three goals of sustainability--environmental protection, economic development, and social justice. The following studies, based on this new concept of sustainablity, are expected (1) to address new participation methods for the conflict resolution, (2) to explore detailed and substantive planning strategies and creative technical and institutional solutions for environmental protection, natural hazard mitigation, and conflict resolution. Two of APFM(the Associated Programme on Flood Management)'s three natural hazard risk criteria, Exposure and Vulnerability, may guide the exploration.