• 제목/요약/키워드: urban network

검색결과 1,203건 처리시간 0.022초

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

광주시(光州市) 의료시설(醫療施設)의 입지(立地)와 주민(住民)의 효율적(效率的) 이용(利用) (The Location of Medical Facilities and Its Inhabitants' Efficient Utilization in Kwangju City)

  • 전경숙
    • 한국지역지리학회지
    • /
    • 제3권2호
    • /
    • pp.163-193
    • /
    • 1997
  • 복지사회를 지향하는 오늘날, 건강 중진에 직접 관계되는 의료시설의 접근성 문제는 주요 과제이다. 특히 삶의 질이라는 측면에서 질병의 치료 외에 건강진단, 예방과 회복, 요양 및 응급서비스의 비중이 커지고, 인구의 노령화 현상이 진전되면서 의료시설의 효율적인 입지가 주 관심사로 대두되고 있다. 의료시설은 주민의 생존과 직접 관계되는 기본적이고도 필수적인 중심시설로, 지역 주민은 균등한 혜택을 받을 수 있어야 한다. 이를 실현시키기 위해서는 기본적으로는 효율성과 평등성을 기반으로 1차 진료기관이 균등 분포해야 한다. 이에 본 연구에서는, 광주시를 사례지역으로 선정하여 의료시설의 입지와 그에 대한 주민의 효율적 이용에 관하여 분석하였다. 분석에 있어서는 통계자료와 기존의 연구 성과 외에 설문 및 현지조사 자료를 기반으로 시설 측면과 이용자 측면을 동시에 고찰하였다. 우선 의료 환경의 변화 및 의료시설의 변화 과정을 고찰하고, 이어서 의료시설의 유형별 입지 특성과 주민의 분포 특성을 고려한 지역별 의료수준을 분석하였다. 그리고 유형별 의료시설의 이용행태와 그 요인을 구명한 후, 마지막으로 장래 이용 유형의 예측과 문제지역의 추출, 나아가서는 시설의 합리적인 입지와 경영 방향을 제시하였다. 본 연구 결과는, 앞으로 신설될 의료시설의 적정 입지에 관한 기본 자료로서는 물론 지역 주민의 불평등성 해소라는 응용적 측면에서 의의를 지닌다.

  • PDF

소비자의 부정적 브랜드 루머의 수용과 확산 (Consumer's Negative Brand Rumor Acceptance and Rumor Diffusion)

  • 이원준;이한석
    • Asia Marketing Journal
    • /
    • 제14권2호
    • /
    • pp.65-96
    • /
    • 2012
  • 루머는 신뢰할 만한 타당한 근거나 이유가 없음에도 불구하고 광범위하게 이야기되는 일상적인 대화나 의견으로서 오랜기간 소비자 개개인의 사적 영역의 문제였다. 그러나 대중의 사랑과 주목을 받는 기업이나 브랜드는 선천적으로 소비자의 관심으로부터 멀어질 수 없으며, 항상 루머의 주요한 소재가 되어 왔다. 그 결과 현대의 소비자 커뮤니케이션 환경에서 루머는 기업 경영활동에 중요한 위기 요인이 되고 있다. 기업과 브랜드들이 당면하는 소비자 루머들은 크게 기업과 관련된 음모성 루머와 상품과 직접적 관련이 있는 오염성 루머로 나누어지며 국내외에서 많은 위기 사례들이 발견되고 있다. 심지어 P&G, SK, 현대, 삼성처럼 잘 정비된 홍보 조직을 갖춘 굴지의 대기업들조차 이런 루머로부터 자유롭지 못하며, 기존의 대응방식 역시 적절하지 못했던 것이 사실이다. 부정적 루머가 주목받아야 하는 이유는 해당 기업의 매출 및 점유율 하락은 물론 주식 가격에도 부정적인 영향을 미치며 오랜기간 구축해온 소비자와의 관계마저 황폐화시킬 가능성이 있기 때문이다. 최근 인터넷, 소셜 네트워크 서비스의 확산과 더불어 브랜드와 관련된 루머의 중요성은 더욱 증대하고 있으나 루머 연구는 지금까지 기업이나 마케팅 연구자의 정당한 주목을 받지 못하였다. 이에 본 연구는 루머의 다각적인 측면을 고려하는 상황주의자적 연구 패러다임을 기반으로 지각된 유용성, 원천 신뢰성, 메시지 신뢰성, 걱정, 생동감과 같은 루머와 관련된 속성들이 루머 수용강도와 루머 구전의도에 미치는 영향을 분석하였다. 이를 위하여 가상 브랜드와 루머가 제시되었으며, 실증조사를 통한 데이터 수집과 분석이 이루어졌다. 연구 결과에 따르면 원천 신뢰성, 메시지 신뢰성, 걱정, 생동감 같은 루머 특성 변수들은 루머 수용 강도에 유의한 영향을 미치고, 루머 수용강도는 루머 구전의도에 유의한 영향을 미치는 것으로 나타났다. 반면에 지각된 중요성은 루머 수용강도에 유의한 영향을 미치지 못하며, 상품 관여도의 조절효과 역시 유의하지 않은 것으로 나타났다. 본 연구는 주요한 실무적, 학문적 시사점을 제공하고 있다. 첫째, 루머를 자연발생적인 사회 현상이 아니라 소비자의 주요 활동의 일부이며, 마케터의 관심과 대응 커뮤니케이션 전략이 필요한 브랜드 관련 현상임을 주장하였다. 둘째, 브랜드 루머의 심리적, 사회적인 다차원적 구성 요인과 확산되는 경로를 제시함으로서 루머에 대한 능동적인 관리 가능성을 제시하였다. 셋째, 온라인상의 루머 활동이 기업 성과에 미치는 영향을 제시함으로서 기업들의 적극적인 온라인 커뮤니케이션 활동과 평판 관리의 필요성을 주장하였다. 넷째, 소비자의 걱정과 같은 부정적 정서가 루머의 온상이 되고 있음을 규명함으로서 소비자의 의혹을 불식시키기 위하여 정확하고 진실된 정보를 제공해야 함을 주장하였다. 다섯째, 루머의 유용성이 확산에 미치는 영향 가설이 기각되었으며, 상품 관여도의 조절 효과 역시 기각되었다. 이는 루머를 접하는 소비자의 입장에서 볼 때, 루머 자체가 무의미하더라도 단순한 재미나 호기심만으로도 얼마든지 확산될 가능성을 암시하고 있다. 일부 기업들은 사실이 아니라는 이유만으로 루머를 무시하거나 간과하는 경우들이 있으나, 기업의 예상과 다르게 루머가 얼마든지 확산될 수 있는 가능성을 보여주며, 기업의 보다 세심한 대응 전략의 필요성을 요구하고 있다.

  • PDF