• Title/Summary/Keyword: urban groundwater

Search Result 215, Processing Time 0.039 seconds

Analysis of Temperature Change of Tunnel Lining with Heating Element (발열체가 적용된 터널 라이닝 내부 및 배면의 온도변화 분석)

  • Jin, Hyunwoo;Kim, Teasik;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2017
  • The damage of the tunnel lining on the cold regions can be represented by cracks and leaks caused by freezing of ground water. However, domestically, the relevant construction guidelines are not provided so far. Thus, in this research, the mechanical behavior and thermal conductivity of designated tunnel area are measured using instrumentation system installed in the lining concrete inside tunnels in order to analysis their behavior with regard to temperature variations. Previous research mainly focused on the effect of temperature on the tunnel lining based on the air and initial ground temperature at urban regions. Thus, this study analyzes effects of air temperature and initial ground temperature of designated tunnel area at the cold regions. The temperature of the groundwater at the backfill of the tunnel lining are analyzed to evaluate the heating element. Numerical analyses are performed to evaluate the heating element with regard to the various initial ground temperatures.

Groundwater Flow Analysis in an Urban Area (도시지역의 지하수 유동 분석)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.235-239
    • /
    • 2011
  • 도시지역은 수자원 공급의 문제를 해결하기 위해서 많은 노력이 이루어지고 있으나 최근 기상 이변과 같은 문제점들로 인하여 용수 공급이 안정적이지 못한 실정이다. 기후적 영향을 적게 받는 지하수의 경우는 비교적 지속적이고 안정적인 수자원으로 많이 이용되고 있으나 이 또한 관리적인 측면의 여러 가지 문제점으로 인하여 어려움을 겪고 있다. 특히 도시지역은 지하수이용량이 많아 지하수개발에 대한 명확한 체계가 이루어지지 않으면 과잉양수로 인한 지하수위 저하로 용수부족, 지하수질 악화 등과 같은 지하수 재해를 일으킬 수 있으며 해안지역일 경우 해수침투로 인하여 그 피해가 광범위하고 장기간으로 확산될 수 있다. 따라서 지하수의 개발 및 관리를 위해서는 지하수 유동에 대한 분석이 이루어져야 효율적인 지하수 이용이 가능하다. 도시지역 지하수 유동의 경우 지하수함양과 지하수유출뿐만 아니라 지속적으로 변화하는 요소들인 지하수이용량, 상하수도 누수량, 지하철로 인한 유출량 등과 같은 도시화 요소들도 고려하여야 한다. 그러나 이러한 요소들을 명확하게 규명하는 것은 매우 어렵다. 지하수자원의 개발 이용 및 관리가 가장 절실히 필요한 곳이 도시지역이라는 점을 감안하면 지하수 유동 분석에 관한 연구는 반드시 필요하며 수문계측 기술의 향상과 관련 분야에 대한 지속적인 연구들도 함께 이루어져서 해석의 정확도가 높아져야만 원활한 수자원 공급과 효율적인 체계 관리가 가능할 것이다. 본 연구에서는 도시지역의 지하수유동특성을 살펴보기 위하여 부산광역시 수영구를 대상으로 도시화 요소를 고려한 지하수 모델링을 통하여 지하수 유동을 분석하였다. 정상상태 지하수 유동 모의를 실시한 결과 지하수위는 산지가 분포하고 있는 북서쪽으로 갈수 록 높아지고 수영강과 남해쪽으로 갈수록 낮아지며 지하수 유동도 내륙에서 수영강 및 남해로 유출되고 있는 모습을 나타내었다. 도시화 요소를 고려한 비정상상태 지하수 유동 모의 결과 수영강 및 남해에서 내륙으로 지하수가 유입되는 형태를 나타내고 있었다. 지하수위 또한 내륙으로 갈수록 낮아지는 형상을 나타내고 있었으며 대량의 양수량의 관정이 위치하는 수영로타리 일대와 광안동 지역, 지하철유출량이 많은 망미역 부근, 전력구 터널 공사로 인한 지하수 유출량이 있는 일부지역에서는 급격하게 지하수위가 낮아지는 것을 알 수 있었다.

  • PDF

A Study on the Waterproofing Performance of Waterproofing Methods for PHC-W Earth Retaining Wall Based on Pressure Chamber Test (PHC-W 흙막이 공법의 차수방안에 관한 차수성능확인을 위한 모형 압력 수조 실험 연구)

  • Choi, Yongkyu;Johannes, Jeanette Odelia;Yun, Daehee;Kim, Chae min;Jeon, Byeong Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.115-125
    • /
    • 2017
  • PHC-W earth retaining wall could be constructed continuously. Various retaining wall methods such as C.I.P. etc. method require separate waterproof method. However, the PHC-W retaining wall method prevents leakage of groundwater by inserting a waterproofing material at connection part between 2 PHC piles. In this study, the experimental study on 3 waterproofing method for PHC-W retaining wall was conducted at the model pressure chamber. In the method using textile with 1-liquid type and 2-liquid type urethane, rapid leak occurred at the pressure of 120 kPa and 140 kPa or more. In the method of textile with grouting, rapid leak occurred at the pressure of 120 kPa or more, however, in this method, the rapid leakage happened at the top part and the bottom part reinforced with urethane.

A Study on the Geotechnical Characteristics of Jeju Area Using Field Tests (현장시험을 이용한 제주지역의 지질특성에 관한 연구)

  • Byung Jo Yoon;Sung Yun Park;Seung Jun Lee
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.769-777
    • /
    • 2022
  • Purpose: This study analyzes and studies the characteristics of the Jeju area and uses them as basic data such as construction method design in the future development project. Method: Based on the ground survey data of the construction conducted in Jeju, the depth, relative density, N value, function state, color tone, groundwater level, and compressive strength were analyzed and studied. Result: Studies show that Jeju has columnar joints consisting of ancient volcanic activity and rapid cooling by nearby seawater, thick sand layers found on the coast, and clinker layers and Seogwipo layers formed by Mercury volcanic activity. Conclusion: It is hoped that it will be used as data for selecting basic design and basic construction method by understanding the special ground form of Jeju area and reflecting its characteristics well when designing construction.

Evaluation of Characteristics of Ground Anchor Using Large Scale Laboratory Test (실규모 실험을 이용한 그라운드 앵커의 거동 특성 평가)

  • Sangrae Lee;Seunghwan Seol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.19-24
    • /
    • 2023
  • Ground anchor has been widely used specially for maintaining stability on reinforced cut slope in expressway. While the durability of the ground anchors should be ensured over the service life. However, the long-term loss of tensile force has occurred in most of field-installed anchors. Main causes are not clearly identified and very few studies have been made for analyzing long-term behavior of ground anchor in slopes. In this study, full-scale model tests and long-term measurements were made to obtain the load-displacement data and identified the causes of the long-term behaviors of ground anchor. As a result, the bond strength decreases exponentially with increasing water-binder ratio. Especially, groundwater is the most influencing factor to the bond strength. In the long-term behavior, the load decreases sharply until the initial settlement stabilized, and thereafter the tension force decreases constantly.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system (하이브리드 빗물정원 시스템에서의 비점오염물질 및 강우유출수 이송 특성)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Geronimo, Franz Kevin F.;Alihan, Jawara Christian P.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • In this research, a pilot scale hybrid rain garden system was developed in order to investigate the efficiency in the different components of the hybrid rain garden system and at the same time evaluate the initial efficiency of the system in treating urban stormwater runoff prior to its actual use in the field. Experimental runs were conducted using synthetic runoff having target concentrations similar to that of the typical runoff characteristics found in different countries and in Korea. With the employment of the hybrid rain garden system, hydrologic improvement was observed as the system demonstrates an approximately 95% reduction in the influent runoff volume with 80% retained in the system, and 15% recharged to groundwater. The reduction was contributed by the retention capabilities of ST and infiltration capabilities in PB and IT. With the combined mechanisms such as filtration-infiltration, biological uptake from plants and soil and phytoremediation that are incorporated in PB and IT, the system effectively reduces the amount of pollutant concentration wherein the initial mean removal efficiency for TSS is 87%, while an approximate mean removal efficiency of 76%, 46% and 56% was observed in terms of organics, nutrients and heavy metal, respectively. With these findings, the research helps in the further improvement, innovation and optimization of rain garden systems and other facilities as well.

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.