• Title/Summary/Keyword: urban freeway on-ramp

Search Result 17, Processing Time 0.027 seconds

Predictive Speed Modeling on Urban Freeway Ramp Junctions under the ITS Setting (ITS 상황하의 도시고속도로 유출입 램프 영향권 속도 예측모형 구축에 관한 연구)

  • 김동수;김태곤
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.419-427
    • /
    • 2000
  • Today travel demand continues to increase with spread of economic zones. Also, urban freeway plays an important role in intra-zone transportations as a major corridor in a big city. However, most of urban freeways experience a severe congestion with the excess of inflowing or outflowing traffic through freeway ramps. The purpose of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the speed predictive models on the ramp junctions of urban freeway under the intelligent transportation system(ITS) settings. From the analyses of traffic characteristics following results were obtained: ⅰ) 24 hours average traffic characteristics flow, occupancy, speed under the ITS settings showed about 40%, 38%, 8.8% increase each on urban freeway junctions period when compared with that under the non-ITS settings each other. Free flow speed and traffic flow on the mainline sections of urban freeway under the ITS settings also showed about 20% and 17% increase when compared with that under the non-ITS, respectively. ⅱ) The upstream when compared speed( $S_{u}$)and downstream occupancy( $O_{d}$) were especially shown to have higher explanatory powers on the stable flow ramp junctions, but the upstream speed( $S_{u}$) and downstream flow( $V_{d}$) were especially shown on the unstable flow ramp junctions of urban freeway under the ITS settings.ngs.ngs.

  • PDF

The Ramp Metering System Construction of Urban Freeway by the Intelligent Transportation System (ITS) Technology (첨단교통체계(ITS)에 의한 도시고속도록의 Ramp Metering 시스템 구축에 관한 연구)

  • 김태곤
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • Today freeway is thought to be a very important transportation facility carrying tremendous traffic flow as the main corridor within the area of between the areas. However freeway is experiencing severe congestion and accidents by increased entrance ramp flow especially at peak time period. Ramp meters on the freeway entrance ramps that supply traffic to the freeway in a measured or appropriately regulated amount are needed for alleviating freeway congestion. Because ramp meters can be operated to discharge traffic at a measured or regulated rate thus maintaining more uniform speed on the mainline section maximizing the throughput to the freeway within the capacity of a downstream bottleneck and reducing the congestion related accidents. Thus the objectives in this study were to analyze the traffic characteristics on the freeway I-94 with ramp metering system before/after ITS technology in Detroit (Michigan) area compare shifts of the traffic characteristics on the freeway I-94 before/after ITS technology and finally suggest a better ramp metering strategy for the freeway system The following results were obtained: i)Flow occupancies and speeds on the mainline merge section of freeway were shown to be a big difference depending on the peak periods areas and directions based on the distribution of traffic flow characteristics on the freeway. ii)Reduced speed was shown to be more than 5 mph and ramp flow was also shown to be more than 240 vph at peak periods if there was the ramp metering system constructed on the freeway. iii)Ramp metering system was shown to be optimally operated on the freeway if ramp flow could be maximized within the range of over 900 vph and reduced occupancy could be also maximized by no more than 2 percent at peak periods. iv)The average flows on the freeway after the ITS technology were shown to be a decrease of over 20% depending on the peak periods areas and directions when compared with those flow on the freeway before the ITS technology. over 20% depending on the peak periods areas and directions when compared with those speeds on the freeway before the ITS technology. vi)The average metering rates on the freeway after the ITS technology were shown to be an increase of over 10% depending on the peak periods areas and directions when compared with those metering rates on the freeway before the ITS technology.

  • PDF

Density Predictive Model within the On-Ramp Merge Influence Areas of Urban Freeway - Based on the Beonyoungro in the Metropolitan City of Busan - (도시고속도로의 유입연결로 합류영향권내 밀도추정모형 구축에 관한 연구 -부산광역시 번영로를 대상으로 -)

  • Kim, Tae Gon;Pyo, Jong Jin;Kwon, Mi Hyun;Jo, In Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.287-293
    • /
    • 2008
  • Density is used as the measure of effectiveness within the ramp junction influence area suggested in the KHCM 2005 in the LOS analysis of the ramp junction, and also density predictive models suggested in the KHCM 2005 is constructed based on the expressway with the speed limit of 100km/h or 110km/h in Korea. So, the density predictive models suggested in the KHCM 2005 are needed to verify if the models could be applied to the urban freeway with the speed limit of 80km/h or less, because the speed limits on most of the urban freeways in Korea are 80km/h or less. The purpose in this study is to construct and verify the appropriate density predictive model within the on-ramp merge influence area of the urban freeway by comparing with the USHCM 2000 and KHCM 2005 models.

Predicting Average Speed within the Enterance and Exit Ramp Junction Areas of Urban Freeway (도시고속도로의 진출·입 연결로 접속구간 내 평균속도의 추정에 관한 연구)

  • Kim, Tae Gon;Kwon, Mi Hyeon;Ji, Seung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.215-222
    • /
    • 2010
  • Average speed denotes a travel speed based on the average travel time of vehicles to traverse a segment of roadway, and average travel speed is used as a measure of effectiveness (MOE) suggested in the highway capacity manual (HCM) for evaluating the level of service (LOS) of roadway. Most of the urban freeways in our country are having congestion problem regardless of the rush hours as a high-speed highway with a speed limit of 80km/h or less. Especially traffic congestion within the ramp junction areas is becoming worse by the increased traffic and lack of links with the arterials around the urban freeway. So, the purpose in this study is to identify the traffic characteristics within the ramp junction areas of urban freeway, predict the average speed within the ramp junction areas based on the traffic characteristics identified, and finally prove the validity of the average speed predicted.

Capacity Analysis in the Ramp Junction of the Urban Freeway Connected with the Busan Port (부산항과 연계된 도시고속도로의 연결로 접속부내 용량특성분석에 관한 연구)

  • Kim, Tae Gon;Jeong, Young Hwan;Park, Jong Man;Ji, Seung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.205-216
    • /
    • 2008
  • Urban freeway is defined as the roadway with 4 lanes or more which requires a high design criteria for handling a large capacity of vehicles rapidly as a high-speed exclusive roadway in the city. However, most of the urban freeways suffer from severe traffic congestion due to the increased traffic exceeding their capacities regardless of the morning and afternoon rushhours or the inbound and outbound directions. The purpose in this study is to collect and investigate the real-time traffic characteristics based on the ramp junction influence areas of the urban freeway connected with the Busan port, compare and analyze the traffic characteristic relationship for each lane within the ramp junction influence areas, and finally assess and suggest the optimal capacity for each lane within the ramp junction influence areas.

A Study on the Effect of Urban Freeway Traffic Control Strategies on Safety (도시고속도로 교통류 제어전략이 교통안전에 미치는 영향에 관한 연구)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.223-237
    • /
    • 1996
  • Based on the traffic and accident data collected on a 4.2km (2.6mile) section of Interstate highway 35W in Minneapolis the relationship between traffic operation variables and safety measures is investigated. An aggregate specification that could be integrated into an urban freeway safety prediction methodology is proposed as a multiple regression model. The specification includes lane occupancy and volume data, which are the control parameters commonly used because they can be measured in real time. The primary variables that appear to affect the safety of urban freeway are : vehicle-miles of travel, entrance ramp volumes and the dynamic effect of queue building. The potential benefits of freeway traffic control strategies on freeway safety are also investigated via a simulation study. It was concluded that improvement of urban freeway safety is achievable by traffic control strategies which homogenize traffic conditions areound critical occupancy values.

  • PDF

Developement of an Optimization Model for Freeway Entrance-Ramp Metering (고속도로시스템의 정주기식 램프미터링을 위한 최적화모형의 개발)

  • 김영찬;빈미영
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.4
    • /
    • pp.117-132
    • /
    • 1995
  • Peak-period congestion is a frequent occurrence on many freeways. Entrance-metering is an effective strategey in improving urban freeway traffic condition. This paper describes the prodecure to develop a computer program for proparing optimum ramp-metering stategies. Four existing ramp-metering optimaization models wer reviewed and evaluated in regared to their theories and actural performances. A optimization model was proposed in this paper. Final model takes aform of quadratic programming. The performance of the propeosed model wastest using FREFLO.

  • PDF

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어)

  • Cho, Ki-Yong;Bae, Chul-Ho;Lee, Jung-Hwan;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.84-92
    • /
    • 2006
  • Freeway Corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. Optimization results are verified by comparison with the results from MATDYMO.

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach I : Simulation System & Modeling for Optimization (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어 I : 시뮬레이션 시스템 개발 및 최적화를 위한 모델링)

  • Cho, Ki-Yong;Bae, Chul-Ho;Kim, Hyun-Jun;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Freeway corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. The design of experiment, neural network, and simulated annealing are used for optimization.

The Linear Density Predictive Models on the On-Ramp Junction in the Urban Freeway (도시고속도로의 진입연결로 접속부내 선형의 밀도예측모형 구축에 관한 연구)

  • Kim, Tae Gon;Shin, Kwang Sik;Kim, Seung Gil;Kim, Jeong Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.59-66
    • /
    • 2006
  • This study was to construct the linear density predictive models on the on-ramp junctions in urban freeway. From the analyses of the real-time traffic characteristic data, and the construction and verification of the linear density predictive models, the models showed a considerable explanatory power with the determination coefficients ($R^2$) of over 0.7 between the density and speed data. Also, they showed a considerably high correlativeness with the correlation coefficients (r) of over 0.8 between the calculated density data and the expected ones estimated by the models.