• Title/Summary/Keyword: urban catchment

Search Result 112, Processing Time 0.032 seconds

Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle (도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정)

  • Lee, Okjeong;Choi, Jeonghyeon;Lee, Jeonghoon;Kim, Sangdan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • In this study, a design strategy is proposed to restore the distorted urban water cycle to the natural water cycle through the LID facility. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. A part of the Noksan National Industrial Complex in Busan was selected as the study area and EPA SWMM was constructed to simulate long-term stormwater for various land use scenarios and LID facility design capacity. In the case that the study area was assumed to be a forest area or an agricultural area before urban development, it was found that it was necessary to allocate 7.3% or 5.5% of the impervious area to the area of the bio-retention in order for the flow duration curve to remain the same as before urban development. As a result of the sensitivity analysis of the bio-retention design capacity according to regional rainfall characteristics, the design capacity of 3.8~5.5% of impervious area is needed for the development of agriculture area. Therefore, it can be seen that the optimum capacity can be significantly different according to regional rainfall characteristics. On the other hand, as a result of analyzing the sensitivity of the design capacity according to the variation of the depth of each layer constituting the bio-retention and the size of contributing catchment area, the sensitivity of the optimal design capacity with respect to the design specifications of the bio-retention and the size of contributing catchment area was not significant.

A Study on the Index of Drought and Drought Management Considering Reservoir Storage (저수용량을 고려한 가뭄지수 산정과 가뭄관리에 관한 연구)

  • Cho, Hong Je;Park, Han Ki;Kim, Su Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.97-105
    • /
    • 1998
  • The goal of the present research was to develop a mean to determine indices of drought warning and emergency necessary to manage drought and establish water supply contingency plan for the municipal and industrial water supply system in urban areas. To do this, we worked on the Sayun catchment which is the main water source of Ulsan and used measured hydrologic data (storage, inflow, supply, outflow) from 1980 to 1996. The indices of drought calculated by the method of Phillips drought index based only on monthly precipitation do not pertinently represent drought phenomena in case water supply is from dam or reservoir in an urban area. Therefor, we developed the drought index technique including inflow, storage, outflow and supply which are the chief factors of drought management. The result showed that the method of Phillips drought index considering the capacity of water supply was excellent when applied to practical drought phenomena.

  • PDF

Analysis of urban catchment characteristics focusing on urban drainage networks and spatial distribution of directly connected impervious areas (네트워크 특성과 불투수면적의 공간적 분포를 중심으로 한 도시유역 특성 분석)

  • Kim, Kyungjae;Seo, Yongwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.154-154
    • /
    • 2016
  • 우리나라는 급격한 경제 발전과 함께 빠르게 도시화가 진행되었다. 하지만 도시화가 진행됨에 따라 불투수면적의 증가로 인해 도시지역 침수에 대한 위험이 야기되고 있다. 배수관망 체계는 지역 내의 강우를 빠르게 배출하는데 목적을 두고 발전해 왔다. 이러한 노력에도 불구하고 서울시는 2010년, 2011년과 같이 반복적인 침수로 인명과 재산 피해를 겪고 있는 실정이다. 본 연구에서는 2010년과 2011년을 기준으로 침수된 서울시 100개의 유역을 선정하고 깁스모형을 적용하여 침수지역을 중심으로 한 배수관망체계의 특성을 분석하였다. 이와 함께 각 유역의 IA(Impervious Area)와 DCIA(Directly Connected Impervious Area)를 근거로 불투수면적의 공간적 분포 특성도 분석하였다. 깁스모형을 이용한 네트워크 특성과 불투수면적의 공간적 분포 특성을 근거로 침수지역과의 상관관계를 분석하였다. 이를 바탕으로 도시 지역의 배수관망의 효율성을 판단하고 지역 특성에 최적화된 배수관망체계를 구축하는데 도움이 될 것이라 기대된다.

  • PDF

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area (도시유역에서 지체저류시설의 수문학적 설계에 관한 연구)

  • 이정식;이재준
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.159-173
    • /
    • 1995
  • This study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Fictitious areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer area is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall frequencies, land uses, drainage patterns, basin shapes and detention storage policies are considered. Flow reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved when the detention storage is planned at the watershed level than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2, Seongnae 1-are selected on the basis of hydrologic response characteristics. Through the regression analysis between dimensionless detention storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage facilities are presented.

  • PDF

Investigations into a Multipurpose Dam in Tasman District-New Zealand

  • Thomas, Joseph Theodore
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.40-48
    • /
    • 2008
  • The Waimea Basin is located on the northern tip of the South Island of New Zealand. It is a highly productive area with intense water use with multi-stakeholder interest in water. Irrigation from the underground aquifers here makes up the largest portion of used water; however the same aquifers are also the key urban and industrial sources of water. The Waimea/Wairoa Rivers are the main sources of recharge to the underlying aquifers and also feed the costal springs that highly valued by the community and iwi. Due to the location of the main rivers and springs close to the urban centre the water resource system here has high community and aesthetic values. Recent enhanced hydrological modelling work has shown the water resources in this area to be over allocated by 22% for a 1:10 year drought security for maintaining a minimalistic flow of 250 l/s in the lower Waimea River. The current irrigated land area is about 3700 hectares with an additional potential for irrigation of 1500 hectares. Further pressures are also coming on-line with significant population growth in the region. Recent droughts have resulted in significant water use cutbacks and the threat of seawater intrusion in the coastal margins. The Waimea Water Augmentation Committee (WWAC) initiated a three year stage 1 feasibility study in 2004/2005 into the viability of water storage in the upper parts of the catchment for enhancing water availability and its security of supply for consumptive, environmental, community and aesthetic benefits downstream. The project also sought to future proof water supply needs for the Waimea Plains and the surrounding areas for a 50 - 100 year planning horizon. The broad range stage 1 investigation programme has identified the Upper Lee Catchment as being suitable for a storage structure to provide the needs identified and also a possibility for some small scale hydro electricity generation as well. The stage 2 detailed feasibility investigations that are underway now (2007/2008), and to be completed in two years is to provide all details for progressing with the next stage of obtaining necessary permits for construction and commissioning a suitable dam.

  • PDF

A Study of the first stage Rain-Water exclusion by hydrophilic coating (친수코팅에 의한 초기우수 배제에 관한 연구)

  • Choi, Won Jun;Kim, Young Jung;Shim, Young Mean;Oh, Hye Cheol;Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.189-197
    • /
    • 2006
  • Water shortage as well as water control problems including urban flood and drought have led to developing technologies for rainwater utilization in order to provide a sustainable water supply. However, relatively few works have been done to improve the water quality during rainwater utilization. Therefore, in this study, the characteristics of rainwater were examined in terms of pollutant concentrations and outflow rate. A experimental rain and roof model($1m{\times}1m$) were produced to evaluate wash-off properties of pollutants. And rainfall intensity were standardized in 10 mm/hr, a experimental model roof catchment surface were coated in $TiO_2$ photocatalyst. Samples of runoff rainwater collected from a experimental model were analyzed for physicochemical parameters such as Turbidity, Suspended Solid, EC. The results show that the first flush of rainwater contains substantial amount of contaminants that potentially pollute the whole rainwater. Surface treatment of roof catchment area using $TiO_2$ photocatalyst allowed a better runoff property of rainwater because of its improved hydrophilicity.

  • PDF

The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins (WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선)

  • Choi, Daegyu;Park, Moo Jong;Park, Bae Kyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.

Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment (기후변화에 따른 서낙동강 시험유역에서의 수질영향 분석)

  • Kang, Ji Yoon;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • Recently, climate change causes climatic anomaly such as global warming, the typhoon and severe rain storm etc. and it brings damage frequently. Climate change and global warming are prevalent all over the world in this century and many researchers including hydrologists have studied on the climate change. In this study, Seonakdong river watershed in the Nakdong river basin was selected as a study area. Real-time monitoring system was used to draw the rating curves, which has 0.78 to 0.96 of $R^2$. To predict runoff change in Seonakdong river watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. As a result, the runoff from the Seonakdong river watershed was increased by up to 45 % in summer. Because of the non-point sources from the farmland and the urban area, the water quality will be affected by the climate change. In this study, the operating plan of the water gates in Seonakdong river will be suggested by considering the characteristics of the watershed runoff due to the climate change. The optimal watergate opening plan will solve the water pollution problems in the reservoir-like river.

A Runoff Characteristics Analysis for the Design of Interior Drainage Systems at Urbanization Catchment in the Cheju Volcanic Island (제주도 화산도서에서 도시화유역 내수처리시스템 설계를 위한 유출특성분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • This study has an object to evaluate runoff characteristics with ILLUDAS model and SWMM owing to each rainfall distribution type of Huff's quartile and each rainfall duration time of 30 ,60, 120 and 180 minutes. As a result of this study, Type-Ⅰ Extreme (TIE) rainfall distribution pattern with Huff's 2nd quartile is adequate for Cheju volcanic island . To decide optimal rain fall duration , time of concentration and critical duration should be compared and analyzed each other. In this study, 30 and 120 miniutes were suggeste to iptiaml duration time of A and B study basins. It is concluded that the magnitude of peak runoff discharge is maximum with Huff's 4th quartile, and that of total runoff volume is maximum with Huff's 4th quartile for ILLUDAS model and with Huff's 1st quartile for SWMM. As rainfall duration time increasing is increasing . Also in case of total runoff volume, volumen by SWMM is less than by ILLUDAS model as to variation ratio of total runoff volume in A and B study basin. Therefore, the resulots of this study canb e sued as basic data in determining adequate rainfoal duration time and rainfall distribution type and used for urban drainage systems analysis and design at small urbanization catchment is Cheju volcanic island.

  • PDF

A Study on Integral System of Public Design in the Context of Local Identity - Focusing on the Landscape Plan and Color Plan of Chungbuk Metropolitan Area - (지역정체성 맥락의 공공디자인 통합체계 연구 - 충북광역도시권의 경관계획과 색채계획을 중심으로 -)

  • Song, Young-Min
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.5
    • /
    • pp.104-111
    • /
    • 2014
  • This study puts its purpose on presenting an integral system of representative urban landscapes, public design and colors, in practicing urban design in the context of local identity. An integral design of public design that successfully plans and executes local identity, and changes recognition of integral management of urban design, is suggested as followings. Firstly, when the catchment area is divided in metropolitan area, it should be reset according to the natural environment condition regardless of administrative area system like city and county. It is the method to classify the metropolitan area by researching and analyzing geographical condition, weather condition, soil and vegetation in detail and subclassify it by the visual commonness of natural environment. Secondly, it is necessary to access the urban landscape, public design and urban color from the overall aspect emphasizing the plan for each field and local identity. They should be practiced by the role and category of each field on the basis of consistent design strategy and instruction but the cooperation system is required as a process to reinforce and specify the mutual limit. Thirdly, the artificial structure is constructed through artificial adjustment depending on the urban formation process and the development time point. Therefore, it is necessary to pay attention to the rapid urban development, the change speed and the landscape formation of each age. It is necessary to classify the type of artificial landscape by age and form similarity and separate the area that should be generalized and controlled by entire metropolitan area form the area that should be specialized by basic local government.