• Title/Summary/Keyword: urban area flow

Search Result 444, Processing Time 0.041 seconds

Urban Model for Mean Flow and Turbulence (평균풍속 및 난류 예측을 위한 도심지 모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon;Kim, Seog-Cheol;Jang, Dong-Du;Joo, Seok-Jun;Shim, Woo-Sup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2923-2928
    • /
    • 2007
  • The study of model for velocity and turbulence within the urban canopy was carried out. To evaluate existing urban model we conducted wind tunnel experiment and large-eddy simulation (LES). Mean velocity profile and turbulence are measured within simple three different obstacle arrays. To obtain supplemental data and to verify morphological model large-eddy simulation was performed. Several methods have been used to achieve embodying the flow field in urban area. Recently, morphological method obtaining flow parameters from the statistical or physical representation of obstacle elements is a arising method. It was found that all morphological model, evaluated in this study, over predict the friction velocity, most sensitive one among the flow parameters. Velocity and turbulence in the urban canopy layer were improved by the correction using 'true' friction velocity.

  • PDF

Runoff Analysis of Urban Area Using Urban Runoff Models (도시유출모형을 이용한 도시유역의 유출분석)

  • An, Sang-Jin;Kim, Jin-Geuk
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.479-488
    • /
    • 1999
  • The flood damage has being increased because of urbanization due to the industrialization and the growth of population. Therefore, the hydrologic properties such as increasing the peak flow and decreasing the concentration time of the peak flow have been changed. Hence, the interest of an urban prevention against flood disasters has been centralized at the present day. The objectives of this study is to develop the suitable models to calculate the runoff characteristics from an urban basin. This study describes the properties of each urban hydrologic model and to determine suitable basin model using the ILLUDAS and SWMM models in the urban runoff models in the Yong-Ahm area at Chungju. The peak flow, concentration time and total runoff value of this area are compared and analyzed with regard to calculated and real values. After obtaining values appropriated from the ILLUDAS and SWMM models using 5 rainfall events in this areas, the peak flows, concentration times and total runoff values are compared with real values. As a result of this study, the Transport block of the SWMM is closely shown to real values.

  • PDF

Development and Application of Grid-Based Urban Surface Runoff Model (격자기반의 도시유역 지표면 유출모형의 개발 및 적용)

  • Kim, Mun-Mo;Lee, Jeong-Woo;Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.25-38
    • /
    • 2007
  • A grid-based urban surface runoff model for simulating the temporal variation and spatial distribution of overland flow in a drainage area was developed. The process of routing of overland flow is modeled by the nonlinear storage equation which is composed of the continuity equation and the Manning's equation. For model operation, the drainage area is divided into grid areas, and spatially distributed topographical and hydrological information for model inputs is provided. Then overland flow is routed for each of the discretized cells of the area. In order to test the applicability of this model, temporal variations and spatial distributions of flow depth and overland flow was simulated in a fictitious and a real urbanized Kunja drainage area. Results indicate that the model can simulate reasonably well the urban runoff hydrograph.

Analysis of Cold Air Flow Characteristics according to Urban Spatial Types to Construct a Wind Road - Focused on Urban Area of Changwon - (바람길 조성을 위한 도시공간유형별 찬공기 유동 특성 분석 - 창원시 도시지역을 중심으로 -)

  • LEE, Su-Ah;SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.30-47
    • /
    • 2022
  • This study analyzed the characteristics of cold air flow according to spatial types in urban areas of Changwon-si, Gyeongsangnam-do. The spatial types were classified by cluster analysis considering the land use map, building information, and topographic characteristics produced on the Changwon biotope map. The amount of cold air and wind speed were derived by KLAM_21 modeling. As a result, spatial types were classified into a total of 14 types considering the density and height of buildings, land use types, and topographic characteristics. Cold air flow was found to generate cold air in the valley of the forest area outside urban area, move through roads and open spaces, and accumulate in the low-lying national industrial complex, and then spread cold air throughout the urban areas. There was a lot of cold air flow in the tall building area, and the cold air accumulation was less in the slope and ridge areas. The results of this study were able to understand the characteristics of cold air flow according to building density, land use type, and topography, which will be usefully used as basic data for urban wind road construction to mitigate climate and improve air quality in urban areas.

Numerical Simulation for Diffusion and Movement of Air Pollutants in Atmospheric Flow Coastal Urban Region (연안도시지역의 대기유동장에서 대기오염물질의 확산과 이동에 관한 수치모의)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.437-449
    • /
    • 1997
  • To predict diffusion and movement of k pollutants In coastal urban region a numerical simulation shouts be consider atmospheric flow field with land-sea breeze, mountain-valley wand and urban effects. In this study we used Lagrangian [article dispersion method In the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the Pollutants emoted from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the One mesh 914 (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and wale air pollutants exhausted from Sasang moved Into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.

  • PDF

Numerical Simulation Experiment on the Wind Ventilation Lane of the Local Circulation Winds in Daegu (대구지역의 국지적 대기순환풍의 환기경로에 관한 수치모의 실험)

  • Gu, Hyeon Suk;Kim, Hae Dong;Gang, Seong Dae
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.367-376
    • /
    • 2004
  • In urban area, thermal pollution associated with heat island phenomena is generally regarded to make urban life uncomfortable. To overcome this urban thermal pollution problem, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane, is widely practiced in many countries. In this study, the prevailing wind ventilation lane of a local winds in Daegu during the warm climate season was investigated by using surface wind data and RAMS(Reasonal Atmospheric Model System) simulation. The domain of interest is the vicinity of Daegu metropolitan city(about 900 $km^{2})$ and its horizontal scale is about 30km. The simulations were conducted under the synoptic condition of late spring with the weak gradient wind and mostly clear sky. From the numerical simulations, the following two major conclusions were obtained: (1)The major wind passages of the local circulation wind generated by radiative cooling over the mountains(Mt. Palgong and Mt. Ap) are found. The winds blow down along the valley axis over the eastern part of the Daegu area as a gravity flow during nighttime. (2)After that time, the winds blow toward the western part of Daegu through the city center. As the result, the higher temperature region appears over the western part of Daegu metropolitan area.

Urban Flood Simulation Considering Building and Sewer Lines (건물 및 우수 배제를 고려한 시가지 범람해석)

  • Kang, Sang-Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.213-219
    • /
    • 2009
  • In densely urban areas, features such as the sewer system, buildings and river banks have an effect on flow dynamics and flood propagation, and will therefore be accounted for in the model set-up. While two-dimensional (2D) flood models of urban areas are at the forefront of current research into flood inundation mechanisms, they are however constrained by inadequate parameters of topography, and insufficient and inaccurate data. In this study, an urban flood model (overland flow, 2D urban flood flow and sewer flow) was combined and applied at Samcheok city which was damaged by inundation in 2002, in order to simulate inundation depth. The influence of buildings and pumping capacity was also analyzed to estimate the inundated depth in the study area. As a result, it was found that urban inundated depth are affected by pumping capacity directly and it increased about 20-30 cm on most of the modeled area with a building share rate of 0.2-0.6 per unit grid.

A large eddy simulation on the effect of buildings on urban flows

  • Zhang, Ning;Jiang, Weimei;Miao, Shiguang
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.23-35
    • /
    • 2006
  • The effect of buildings on flow in urban canopy is one of the most important problems in local/micro-scale meteorology. A large eddy simulation model is used to simulate the flow structure in an urban neighborhood and the bulk effect of the buildings on surrounding flows is analyzed. The results demonstrate that: (a) The inflow conditions affect the detailed flow characteristics much in the building group, including: the distortion or disappearance of the wake vortexes, the change of funneling effect area and the change of location, size of the static-wind area. (b) The bulk effect of the buildings leads to a loss of wind speed in the low layer where height is less than four times of the average building height, and this loss effect changes little when the inflow direction changes. (c) In the bulk effect to environmental fields, the change of inflow direction affects the vertical distribution of turbulence greatly. The peak value of the turbulence energy appears at the height of the average building height. The attribution of fluctuations of different components to turbulence changes greatly at different height levels, in the low levels the horizontal speed fluctuation attribute mostly, while the vertical speed fluctuation does in high levels.

Size Characterization of Urban Airborne Particles Using Sedimentation/Steric Field-Flow Fractionation (Sd/StFFF)

  • Lee, Jae-Yong;Lee, Seung-Ho;Min, Young-Hong;Hyun, Dae-Yeung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1172-1176
    • /
    • 2003
  • This study aims to investigate the applicability of Sd/StFFF and to develop a method for size characterization of urban airborne particles, focusing primarily on particles larger than about 1 mm. It was found that the airborne concentration vary with time, although no particular seasonal trend was observed. When averaged over time, the airborne concentration was the lowest in the park areas with 99 ㎍/m³. The apartment, industrial, and central city area showed similar levels of the airborne concentrations with 166, 170, and 171 ㎍/m³, respectively. The housing area showed the highest airborne concentration with 201 μg/m³ among all tested areas. A power-programmed Sd/StFFF was used for size analysis of airborne particles with the initial field strength of 300 rpm, $t_a$ = 4, $t_i$ = -16, p = 8, and the flow rate of 7 mL/min. It was found that urban airborne samples were mostly populated by particles having diameters between about 5 to 20 ㎛, although all have broad size distributions ranging up to about 50 ㎛. Under the Sd/StFFF condition used in this study, no significant differences were found in size distributions among the airborne particles collected at different urban sites, and also among those collected at different times.

An Analysis of Urban Network in Seoul Metropolitan Area by Interaction Indices (상호작용 지수를 이용한 수도권 도시 네트워크 분석)

  • Yi, Bongjo;Yim, Seokhoi
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.1
    • /
    • pp.30-48
    • /
    • 2014
  • Relying on the interaction indices - dominance index, relative strength index and entropy index, this paper analyzes the structural features of urban network in the Seoul metropolitan area with the flows of commuting, business, and freight. Analytical results show that the Seoul metropolitan urban system is vertical, size-dependent, one-way, and the highest city-dominant network rather than horizontal, size-neutral, two-way, complementary one. The network of freight flow is a little bit more symmetrical than the networks of commuting and business. However, the interaction with Seoul is still determinant in all aspects of hierarchical structure, relative strength, and symmetry of flow.

  • PDF