• Title/Summary/Keyword: urban classification

Search Result 634, Processing Time 0.029 seconds

A Study on Utilizing 1:1,000 Digital Topographic Data for Urban Landuse Classification (도시지역 토지이용분류를 위한 1:1,000 수치지형도 활용에 관한 연구)

  • Min, Sookjoo;Kim, Kyehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.149-156
    • /
    • 2006
  • Existing method of landuse classification using aerial photographs or field survey requires relatively higher amount of time and cost due to necessary manual work. Especially in urban area where the pattern of landuse is densely aggregated, a landuse classification using satellite image is more complex. In this background, this study proposes a landuse classification method to utilize 1:1,000 digital topographic data and IKONOS satellite image. To prove the possibility of this method, the method was applied to Seoul metropolitan area. The results shows the total accuracy of approximately 95% and 14 landuse classes extracted. Based on the results from the pilot study, this method is applicable to landuse classification in urban area.

Present Status and Future Trends on Urban Greening at Special Sites

  • Huinan Fu;hongye Huan
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.51-56
    • /
    • 2004
  • This paper discussed the use of the urban greening space beside nature land----special sites of urban Greening. Consider: the special sites of urban greening are referred to the space formed by urban building and framing, where plants can grow under natural or artificial condition. Filly using those spaces will efficiently increase green area, improving ecological environment and landscape in urban area. A classification to special sites of urban greening was put forward, which are the habits of plant combine with the form of buildings. The present status and future trends on urban greening at special sites was discussed and analyzed. Consider: there are two developing trends of the research of urban greening at special sites. Firstly, it is more naturalize and ecologize greening landscape. Secondly, It will take form a techologize in the process of constructing and materials.

  • PDF

A study on evaluating the spatial distribution of satellite image classification error

  • Kim, Yong-Il;Lee, Byoung-Kil;Chae, Myung-Ki
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.213-217
    • /
    • 1998
  • This study overviews existing evaluation methods of classification accuracy using confusion matrix proposed by Cohen in 1960's, and proposes ISDd(Index of Spatial Distribution by distance) and ISDs(Index of Spatial Distribution by scatteredness) for the evaluation of spatial distribution of satellite image classification errors, which has not been tried yet. Index of spatial distribution offers the basis of decision on adoption/rejection of classification results at sub-image level by evaluation of distribution, such as status of local aggregation of misclassified pixels. So, users can understand the spatial distribution of misclassified pixels and, can have the basis of judgement of suitability and reliability of classification results.

  • PDF

Geometrical Featured Voxel Based Urban Structure Recognition and 3-D Mapping for Unmanned Ground Vehicle (무인 자동차를 위한 기하학적 특징 복셀을 이용하는 도시 환경의 구조물 인식 및 3차원 맵 생성 방법)

  • Choe, Yun-Geun;Shim, In-Wook;Ahn, Seung-Uk;Chung, Myung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.436-443
    • /
    • 2011
  • Recognition of structures in urban environments is a fundamental ability for unmanned ground vehicles. In this paper we propose the geometrical featured voxel which has not only 3-D coordinates but also the type of geometrical properties of point cloud. Instead of dealing with a huge amount of point cloud collected by range sensors in urban, the proposed voxel can efficiently represent and save 3-D urban structures without loss of geometrical properties. We also provide an urban structure classification algorithm by using the proposed voxel and machine learning techniques. The proposed method enables to recognize urban environments around unmanned ground vehicles quickly. In order to evaluate an ability of the proposed map representation and the urban structure classification algorithm, our vehicle equipped with the sensor system collected range data and pose data in campus and experimental results have been shown in this paper.

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.

Landuse Classification Nomenclature for Urban Growth Analysis using Satellite Imagery (도시확장 분석을 위한 위성영상 토지이용 분류기준 설정에 관한 연구)

  • Kim, Youn-Soo;Lee, Kwang-Jae;Ryu, Ji-Won;Kim, Jung-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.83-94
    • /
    • 2003
  • All the urban planning process require land use informations, which should be obtained after through intensive investigation and accurate analysis about the past and current situations and conditions of a city. Until now, the generation of land use informations from remotely sensed imagery has had many limitation because of its spatial resolution. It is now expected that the availability of high resolution satellite imagery whose spatial resolution less than 10m will reduce these limitations. For the purpose of urban growth monitoring we must first establish a urban land use classification nomenclature. In this study, we would like to establish a land use nomenclature for land use classification using remotely sensed data, especially using KOMPSAT EOC imagery.

  • PDF

Classification of Fused SAR/EO Images Using Transformation of Fusion Classification Class Label

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • Strong backscattering features from high-resolution Synthetic Aperture Rader (SAR) image provide useful information to analyze earth surface characteristics such as man-made objects in urban areas. The SAR image has, however, some limitations on description of detail information in urban areas compared to optical images. In this paper, we propose a new classification method using a fused SAR and Electro-Optical (EO) image, which provides more informative classification result than that of a single-sensor SAR image classification. The experimental results showed that the proposed method achieved successful results in combination of the SAR image classification and EO image characteristics.

A study on the classification of storages in urban area (도시지역 저류시설 분류체계 연구)

  • Ryu, Jaena;Oh, Jeill;Lee, Ho Ryeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.637-647
    • /
    • 2012
  • Recent series of flooding events in urban area has brought a growing concern on storage facilities as a major stormwater management method. The Korean Ministry of Environment has announced diverse plans to tackle the problem, including plans for multi-purpose storages which deal both the stormwater and wastewater. Even though storages can be categorized for different perspectives, classification of possible storages in urban area has not been throughly studied so far. This study investigated diverse references of urban storages and suggested systematic classifications on structural, functional and some other basis. Structural classification mainly concerns structural shape of facilities and includes (1)Cisterns & Rain barrels, (2)Forebays, (3)Dry basins, (4)Wet basins and (5)Constructed wetland. Those functions can be (1)flood prevention (2)water quality control and (3)reuse of stored water. Other criteria that categorize storages depend on (1)height, (2)location, (3)configuration, (4)depth, (5)site of the installation and (6)shape.

Neural Network Based Land Cover Classification Technique of Satellite Image for Pollutant Load Estimation (신경망 기반의 오염부하량 산정을 위한 위성영상 토지피복 분류기법)

  • Park, Sang-Young;Ha, Sung-Ryong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.1-4
    • /
    • 2001
  • The classification performance of Artificial Neural Network (ANN) and RBF-NN was compared for Landsat TM image. The RBF-NN was validated for three unique landuse types (e.g. Mixed landuse area, Cultivated area, Urban area), different input band combinations and classification class. The bootstrap resampling technique was employed to estimate the confidence intervals and distribution for unit load, The pollutant generation was varied significantly according to the classification accuracy and percentile unit load applied. Especially in urban area, where mixed landuse is dominant, the difference of estimated pollutant load is largely varied.

  • PDF

Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts (소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발)

  • Lee, Ju-Kyung;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.42-57
    • /
    • 2022
  • This study aims to create a basic model for classifying the activity photos that urban park users shared on social media using Deep Learning through Artificial Intelligence. Regarding the social media data, photos related to urban parks were collected through a Naver search, were collected, and used for the classification model. Based on the indicators of Naturalness, Potential Attraction, and Activity, which can be used to evaluate the characteristics of urban parks, 21 classification categories were created. Urban park photos shared on Naver were collected by category, and annotated datasets were created. A custom CNN model and a transfer learning model utilizing a CNN pre-trained on the collected photo datasets were designed and subsequently analyzed. As a result of the study, the Xception transfer learning model, which demonstrated the best performance, was selected as the urban park user activity image classification model and evaluated through several evaluation indicators. This study is meaningful in that it has built AI as an index that can evaluate the characteristics of urban parks by using user-shared photos on social media. The classification model using Deep Learning mitigates the limitations of manual classification, and it can efficiently classify large amounts of urban park photos. So, it can be said to be a useful method that can be used for the monitoring and management of city parks in the future.