• 제목/요약/키워드: uranium metal

검색결과 132건 처리시간 0.026초

모의 금속전환체 U-Nb 합금의 공기중 산화거동 (Oxidation Behavior of Simudated Metallic U-Nb Alloys in Air)

  • 이은표;주준식;유길성;조일제;국동학;김호동
    • 방사성폐기물학회지
    • /
    • 제2권4호
    • /
    • pp.239-244
    • /
    • 2004
  • 사용후핵연료 금속전환체의 저장 안정성을 높이기 위해 금속전환체의 주성분인 금속우라늄과 산화 안정화물질로 알려져 있는 Nb을 첨가하여 모의 금속전환체 합금을 제작하였다. 모의 금속전환체 합금을 $200{\sim}300^{\circ}C$ 온도구간에서 순수 산소분위기로 산화시험을 수행하고 무게증가(wt%)를 열중량 분석기(TGA)로 측정하였다. 산화 실험결과 U-Nb 모의 금속전환체는 순수 금속우라늄에 비하여 상당한 산화 저항성을 가졌다. U-Nb 합금의 경우 Nb의 함량 1, 2, 3, 4 wt%에 따라 각각 온도가 $200^{\circ}C$일 경우에는 1.61, 7.78, 11.76, 20.14배 , $250^{\circ}C$에서 1.45, 5.98, 10.08, 11.15배, $300^{\circ}C$에서 1.33, 4.82, 8.87, 6.84배 순수 금속우라늄에 비해 산화저항성이 향상되는 것으로 나타났다. 또한 U-1~4 wt%Nb 합금에 대한 활성화에너지는 17.13~21.92 kcal/mol 로 나타났다.

  • PDF

사용후핵연료의 우라늄 금속 전환율 측정 및 전환체 내 핵분열생성물의 산화거동 연구 (Study on uranium metalization yield of spent pressurized water reactor fuels and oxidation behavior of fission products in uranium metals)

  • 최계천;이창헌;김원호
    • 분석과학
    • /
    • 제16권6호
    • /
    • pp.431-437
    • /
    • 2003
  • 가압경수로 사용후핵연료 (이산화 우라늄)의 리튬환원공정으로부터 생산된 우라늄 금속 전환체에 대한 금속 전환율을 건식방법인 열중량분석법 (T.G.A)으로 측정하였다. 전환체를 고체와 분말로 분류하여 측정한 결과 우라늄 금속 전환율은 각각 90.7~95.9 및 77.8~71.5 wt% 이었다. 금속 전환체의 건식저장 시 열적 산화 안정성을 확인하기 위하여 전환체내에 함유되어 있는 Mo, Ru, Rh 및 Pd 합금에 대한 산화 거동을 조사하였다. 합금을 $600{\sim}700^{\circ}C$의 공기분위기에서 산화시킨 결과 0.40~0.55 wt%의 무게증가를 보였으며 $750^{\circ}C$부터는 표면으로부터 산화가 진행되어 상변화가 일어났다. $900^{\circ}C$에서는 Mo의 휘발에 의한 영향으로 0.76~25.22 wt%의 무게 감소를 나타내었다.

The Role of Organic Matter in Gold Occurrence: Insights from Western Mecsek Uranium Ore Deposit

  • Medet Junussov;Ferenc Madai;Janos Foldessy;Maria Hamor-Vido
    • 자원환경지질
    • /
    • 제57권4호
    • /
    • pp.371-386
    • /
    • 2024
  • This paper presents analytical insights regarding into the occurrence of gold within organic matter, which is hosted by solid bitumen and closely associated with uranium ores in the Late Permian Kővágószőllős Sandstone Formation in Western Mecsek, South-West Hungary. The study utilizes a range of analytical techniques, including X-ray powder diffraction (XRPD) and wavelength dispersive X-ray fluorescence (WD-XRF) for comprehensive mineralogical and elemental analysis; organic petrography and electron microprobe analysis for characterizing organic matter; and an organic elemental analyzer for identifying organic compounds. A three-step sequential extraction method was used to liberate gold from organic matter and sulfide minerals, employing KOH, HCl, and aqua regia, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to quantify gold contents. The organic matter is identified as comprising two vitrinite types (telinite V1 and reworked V2) and three solid bitumen forms: nonfluorescing (B1) and fluorescing (B2) fillings within the V1, as well as homogenous pyrobitumen (PB) occupying narrow cracks and voids within globular quartz. Despite the samples exhibiting low total organic carbon content (<1 wt%), they display high sulfur content (up to 6 wt%) and the sequentially extracted noble metal content from the organic matter is found to total 7.45 ppm gold. The research findings suggest that organic matter plays crucial roles in ore mineralization processes. Organic matter acts as an active component in the migration of gold, uranium, and hydrocarbons within sulfur-rich hydrothermal fluids. Additionally, organic matter contributes to the entrapment and enrichment of gold in hetero-atomic organic fractions, forming metal-organic compounds. Moreover, uranium inclusions are observed as oxide/phosphate minerals within solid bitumen and associated vitrinite particles. These insights into the occurrence and distribution of gold within organic matter highlight substantial exploration potential, guiding additional research activities focused on organic matter within the Kővágószőllős Sandstone Formation at the Western Mecsek deposit.

Adsorption of Rare Earth Metal Ion on N-Phenylaza-15-Crown-5 Synthetic Resin with Styrene Hazardous Material

  • Kim, Se-Bong;Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제7권2호
    • /
    • pp.130-137
    • /
    • 2014
  • Resins were synthesized by mixing N-phenylaza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 6%, and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermo gravimetric analysis (TGA), surface area, and IR-spectroscopy. The effects of pH, equilibrium arrival time, dielectric constant of solvent and crosslink on adsorption of metal ions by the synthetic resin adsorbent were investigated. The metal ions were showed fast adsorption on the resins above pH 4. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (VI) > zinc (II) > europium (III) ions. The uranium ion adsorbed in the order of 1%, 2%, 6%, and 12% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

OenNtn-스틸렌-DVB 수지를 이용한 우라늄(VI) 이온의 흡착 (Adsorption of Uranium Ion Utilizing OenNtn-Styrene-DVB Resin)

  • 김준태;노기환;강영식
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.9-15
    • /
    • 2003
  • Resins have been synthesized from chlormethyl styrene 1,4- divinylbenzene(DVB) with 1%, 4%, and 20%-crosslinked and macrocyclic ligand of cryptand type by copolymerization method and the adsorption of uranium(VI), nickel(II) and lutetium(III) ions have been investigated in various experimental conditions. The correlation between the adsorption characteristics of rare earths and transition metal on the resins and stability constants of complexes with macrocyclic ligand have been examined. The uranium ion was not adsorbed on the resins below pH 2.0, but the power of adsorption of uranium ion increased rapidly above pH 3.0. The adsorption power was in the order of 1%, 4% and 20%-crosslinked resin, but adsorptive characteristics of resins decreased in proportion to the order of dielectric constants of solvents.

Styrene을 이용한 OenNtn수지의 합성과우라늄(VI) 이온 흡착 특성 (Adsorption characteristic of uranium(VI) on OenNtn synthetic resin with styrene)

  • 김준태
    • 환경위생공학
    • /
    • 제23권2호
    • /
    • pp.47-53
    • /
    • 2008
  • The ion exchange resins have been synthesized from chloromethyl styrene (dangerous matter) 1, 4-divinylbenzene(DVB) with 1%, 5%, and 15%-crosslinked and macrocyclic ligand of cryptand type by copolymerization method and the adsorption of uranium(VI), cobalt(II) and europium(III) ions have been investigated in various experimental conditions. The correlation between the adsorption characteristics of rare earths and transition metal on the resins and stability constants of complexes with macrocyclic ligand have been examined. The uranium ion was not adsorbed on the resins below pH 2.0, but the power of adsorption of uranium ion increased rapidly above pH 3.0. The adsorption power was in the order of 1%, 5% and 15%-crosslinked resin, but adsorptive characteristics of resins decreased in proportion to the order of dielectric constants of solvents.

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • 박성빈;서중석;강대승;권선길;박성원
    • 방사성폐기물학회지
    • /
    • 제3권2호
    • /
    • pp.105-112
    • /
    • 2005
  • 650$^{\circ}C$의 LiCl-Li$_{2}$O 용융염계에서 10 g U$_{3}$O$_{8}$/batch 규모의 장치를 이용해서 우라늄산화물의 전해환원 특성에 대한 평가를 수행하였다. 일체형 음극은 고체전극, 우라늄산화물과 우라늄산화물을 담아주는 다공성 용기(멤브레인)로 구성된다. 멤브레인 재료로는 325-mesh 스테인레스강막과 다공성 마그네시아 도가니를 사용하였다. 일체형 음극의 재질에 따른 LiCl-3 wt$\%$ Li$_{2}$O계와 U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O계의 순환 전압측정법 결과로부터 전해환원 반웅 메커니즘을 규명하였다. 일체형 음극의 재질에 따른 우라늄산화물의 직접 및 간접 전해환원에 대한 실험을 수행하였다. 그 결과, 325-mesh스테인레스강막을 사용하여 직접 및 간접 전해환원으로 금속전환을 수행하였을 때 낮은 전류효율로 인해 우라늄산화물을 금속우라늄으로 환원시키지 못했으며, 마그네시아 다공성 도가니를 사용하여 간접 전해환원으로 금속전환을 수행하였을 때는 높은 전류효율로 인해 우라늄산화물을 금속우라늄으로 환원시킬 수 있었다

  • PDF

Recovery of Zirconium and Removal of Uranium from Alloy Waste by Chloride Volatilization Method

  • Sato, Nobuaki;Minami, Ryosuke;Fujino, Takeo;Matsuda, Kenji
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.179-182
    • /
    • 2001
  • The chloride volatilization method for the recovery of zirconium and removal of uranium from zirconium containing metallic wastes formed in spent fuel reprocessing was studied using the simulated alloy waste, i.e. the mixture of Zr foil and UO$_2$/U$_3$O$_{8}$ powder. When the simulated waste was heated to react with chlorine gas at 350- l00$0^{\circ}C$, the zirconium metal changed to volatile ZrCl$_4$showing high volatility ratio (Vzr) of 99%. The amount of volatilized uranium increases at higher temperatures causing lowering of decontamination factor (DF) of uranium. This is thought to be caused by the chlorination of UO$_2$ with ZrCl$_4$vapor. The highest DF value of 12.5 was obtained when the reaction temperature was 35$0^{\circ}C$. Addition of 10 vol.% oxygen gas into chlorine gas was effective for suppressing the volatilization of uranium, while the volatilization ratio of zirconium was decreased to 68% with the addition of 20 vol.% oxygen. In the case of the mixture of Zr foil and U$_3$O$_{8}$, the V value of uranium showed minimum (44%) at 40$0^{\circ}C$ with chlorine gas giving the highest DF value 24.3. When the 10 vol.% oxygen was added to chlorine gas, the V value of zirconium decreased to 82% at $600^{\circ}C$, but almost all the uranium volatilized (Vu=99%), which may be caused by the formation of volatile uranium chlorides under oxidative atmosphere.ere.

  • PDF

고밀집 Glassy Carbon 섬유 다발체 전극 전해계를 이용한 금속 이온의 in-situ 전해 역추출 특성 연구 (A Study on in-situ Electrolytic Stripping of a Metal Ion by Using a Highly Packed Glassy Carbon Fiber Column Electrode System)

  • 김광욱;김영환;이일희;유재형
    • 공업화학
    • /
    • 제9권4호
    • /
    • pp.475-480
    • /
    • 1998
  • 본 연구에서는 고밀집 glassy carbon (GC) 섬유 다발체 전극 전해계를 사용하여 우라늄 (VI)를 함유한 유기상과 질산 수용상의 혼합상에서 전해 역추출시 우라늄 (VI) 환원 전해특성 연구가 수행되었고, 이에 관한 전해 역추출 모델을 제시하였다 우라늄 (VI) 전해환원 반응은 혼합상 내의 수용상에서 보다 혼합상 내의 유기상에서 빨리 일어났다. 유기상의 유속이 증가하는 경우 역추출 과정에서 유기상 내 우라늄 이온의 확산 저항 증가에 의해서 수용상으로의 역추출은 증가하다 일정하게 되었으며, 수용상 유속 변화는 총 우라늄 (VI) 환원전류에는 영향을 주지 않았다. 전해반응이 없는 경우보다 전해 반응이 동반되는 경우 우라늄 역추출이 보다 효과적으로 이루어 짐을 알 수 있었다.

  • PDF

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 춘계학술논문요약집
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF