• Title/Summary/Keyword: upstream scheme

Search Result 147, Processing Time 0.021 seconds

Packet Delay and Loss Analysis of Traffic with Delay Priority in a DBA Scheme of an EPON (EPON의 DBA방안에서 지연 우선순위를 갖는 트래픽의 재킷 손실률과 지연 성능 분석)

  • Park Chul-Geun;Shim Se-Yong;Jung Ho-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8B
    • /
    • pp.507-513
    • /
    • 2005
  • As the rapid increasement of the number of internet users has occured recently, many multimedia application services have been emerging. To improve quality of service, traffic can be suggested to be classified with priority in EPON(Ethernet Passive Optical Network), which is supporting the multimedia application services. In this paper, multimedia application services treat bandwidth classifying device in serving both delay sensitive traffic for real-time audio, video and voice data such as Von(Voice over Internet Protocol), and for real-time traffic such as BE(Best Effort). With looking through existing mechanisms, new mechanism to improve the quality will be suggested. The delay performances and packet losses of traffic achieved by supporting bandwidth allocation of upstream traffic in suggested mechanism will be analized with simulations.

Experimental/ Computational Study on the Passive Control of Supersonic Cavity Flow using a Sub-Cavity (Sub-cavity를 이용한 초음속 cavity 유동의 피동제어에 대한 실험 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.295-298
    • /
    • 2007
  • The effectiveness of passive control techniques for reducing the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed in the upstream edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

  • Kang, Byoung-Wook;Lee, Kwanil;Lee, Sang Bae;Kim, Chul Han
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.436-441
    • /
    • 2014
  • We have demonstrated an amplified wavelength-division multiplexed (WDM) passive optical network (PON) by using broadband light source (BLS) seeded optical sources and chirped fiber Bragg gratings (FBGs) based dispersion compensators. Chirped FBGs located at central office (CO) were fabricated and used as channel-by-channel dispersion compensators in order to mitigate the dispersion-induced distortion of both downstream and upstream signals. Owing to a low insertion loss of chirped FBG based dispersion compensator, the optical signal-to-noise ratio (OSNR) of the downstream signal could be improved to be ~28 dB. Thus, we re-confirmed that an error-free transmission of 1.25 Gb/s signals over a 100 km single-mode fiber (SMF) link could be achieved with a proposed amplified WDM-PON architecture. We have also evaluated the impact of various noises on the system's performance, and found that the low OSNR of the downstream signal would be a main limiting factor on the maximum reach of the proposed amplified WDM-PON architecture. From the measured ~13 dB improvement in OSNR of the downstream signal compared to our previously-proposed dispersion compensating module based scheme, we believe that the proposed architecture can accommodate a reach of longer than 100 km SMF link easily.

Effect of Nonequilibrium Condensation on the Oscillation of the Terminating Shock in a Transonic Airfoil Flow (천음속 익형 유동에 있어서 비평형 응축이 충격파 진동에 미치는 영향)

  • Kim, Jin-Soo;Lee, Sung-Jin;Alam, Miah Md. Ashraful;Kwon, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • In this study, to find the effect of nonequilibrium condensation on the oscillation of the terminating shock wave in transonic flows, an NACA0014 airfoil flow with nonequilibrium condensation is analyzed using the total variation diminishing (TVD) numerical scheme. Transonic free stream Mach numbers of 0.81-0.87 are tested with variations in the stagnation relative humidity. For the same free stream Mach number and attack angle of ${\alpha}=0^{\circ}$, an increase in the stagnation relative humidity attenuates the strength of the terminating shock and reduces the oscillation of the terminating shock wave. Furthermore, for the same stagnation relative humidity, the larger the free stream Mach number becomes, the shorter the period of the oscillation shock wave is. The excursion distance of the oscillation shock increases with the free stream Mach numbers for the same stagnation relative humidity. Finally, it is found that for the same shock location, the strength of the oscillating shock facing upstream is stronger than that facing downstream.

Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows (급변류에 의한 하상변동 예측을 위한 수심적분 수치모형)

  • Kim, Boram;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1061-1066
    • /
    • 2014
  • A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

A Study on the Grant Request Protocol for the UC of ATM PON Based on ITU-T G.983.1 (G.983.1 기반의 ATM PON에서 MAC을 위한 승인요청 프로토콜에 관한 연구)

  • Chung, Hae;Kim, Jin-Hee;Kwun, Sun-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.3-15
    • /
    • 2000
  • As an OLT in the central office controls up to 64 ONUs in the subscriber area via a passive optical splitter, the hU PON system can accomodate PTTx in a single platform with low cost. To operate the system, it is important to implement an efficient MAC protocol, however, the protocol is currently the further study area in the ITU-T 0.983.1. In this paper, we suggest the MAC protocol which is needed to send cells of ONU to upstream, and based on the ITU-T G.983.1. We survey conventional MAC protocols which are not based on G.983.1, and then formulate the minislot period and length for the grant request and determine the optimal value of each parameter. Also, we suggest a coding scheme for the grant field of the PLOAM cell and the procedure allocating optimal parameters to the ONU.

  • PDF

Early-Year Performance of the Sihwa Constructed Wetland for Stream Water Treatment (하천수 정화를 위한 시화인공습지의 초기 수질 정화능)

  • Kwun, Soon-Kuk;Lee, Kyung-Do;Cho, Young-Hyun;Kim, Song-Bae;Cheon, Gi-Seol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.93-102
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of Sihwa reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, we monitored hydrology, macrophyte (Phragmites communis Trin,) growth, and water quality in the Banwol and Donghwa wetlands to evaluate their performance during the initial period after the completion of wetland construction, The average removal efficiency($\%$) in each wetland was relatively low compared with the performance data from the North America Wetland Treatment System Database (NADB), which mainly includes urban sewage-treatment wetlands. However, the average removal rates per unit area ($g/m^{2}/day$) were 0.72, 0.72 and 0.51 (BOD), 2,04, 2.46 and 0.70 (SS), 0.89, 0.43 and 1.09 (TN) and 0.02, 0.02 and 0.02 (TP) in the Banwol and Donghwa wetlands and NADB, respectively. The overall performance of the Banwol and Donghwa wetlands was within the expected range of the wetland system processes contributing the reduction of the pollutant load to Lake Sihwa during the initial period of wetland operation. Considering the low influent concentration, high hydraulic loading rate, and insufficient macrophyte growth since the wetland was constructed, better performance is expected if an improved operational scheme is adopted.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.