• Title/Summary/Keyword: upsetting process

Search Result 103, Processing Time 0.028 seconds

Residual Stress Prediction and Hardness Evaluation within Cross Ball Grooved Inner Race by Cold Upsetting Process (냉간 업셋팅 공정에 의한 경사형 볼 그루브를 갖는 내륜의 잔류응력 예측 및 경도 평가)

  • T.W. Ku
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.180-190
    • /
    • 2023
  • This study deals with residual stress prediction and hardness evaluation within cross ball grooved inner race fabricated by cold upsetting process consisted of upsetting and ejection steps. A raw workpiece material of AISI 5120H (SCr420H) is first spheroidized and annealed, then phosphophyllite coated to form solid lubricant layer on its outer surface. To investigate influences of the heat treatment, uni-axial compression tests and Vickers micro-hardness measurements are conducted. Three-dimensional elasto-plastic FE simulations on the upsetting step and the ejection one are performed to visualize the residual stress and the ductile (plastic deformation) damage. External feature of the fabricated inner race is fully captured by using an optical 3D scanner, and the micro-hardness is measured on internal cross-sections. Consequently, the dimensional compatibility between the simulated inner race and the fabricated one is ensured with a difference of under 0.243mm that satisfied permissible error range of ±0.50mm on the grooved surface, and the predicted residual stress is verified to have similar distribution tendency with the measured Vickers micro-hardness.

A Study on the Improvement of Forming Process of Power Assisted Steering Part (PAS부품의 공정개선에 관한 연구)

  • 윤대영;황병복;유태곤
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

A study on the forming process and formability improvement of clutch gear for vehicle transmission (자동차 트랜스미션용 클러치 기어의 성형 공법 및 성형성 향상에 관한 연구)

  • Lee K. O.;Kang S. S.;Kim J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.184-187
    • /
    • 2005
  • Forging process is one of the forming process and is used widely in automobile parts and manufacture industry. Especially the gears like spur gear, helical gear, bevel gear were produced by machine tool, but recently they have been manufactured by forging process. The goal of this study is to study forming process with data obtained by comparison between forward extrusion and upsetting simulation results and formability improvement by various heat treatment conditions. By analysis data of 3D FEM by upsetting and forward extrusion forming, the forming process of clutch gear develops using data based on 3D FEM analysis. Through tensile test using specimens by various heat treatment conditions, the optimal heat treatment condition is obtained by comparison the results of tensile test.

  • PDF

Effect of Flow Stress, Friction, Temperature, and Velocity on Finite Element Predictions of Metal Flow Lines in Forgings (유동응력, 마찰, 온도, 속도 등이 단조 중 단류선의 유한요소예측에 미치는 영향)

  • Choi, M. H.;Jin, H. T.;Joun, M. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, the effect of flow stress, friction, temperature, and velocity on finite element predictions of metal flow lines after cylindrical upsetting is presented. An actual three-stage hot forging process involving an upsetting step is utilized and experimental metal flow lines are measured to study the effect of the various process variables. It was found that temperature and velocity for reasonable values of friction have little influence on metal flow lines especially those located deep within the cylinder but that flow stress has a direct influence on the flow lines. It was shown that a pure power law material model cannot reflect the real flow stress of hot material because it underestimates the flow stress especially around the dead-metal zone for the upsetting of a cylindrical specimen. It is thus recommended that a proper lower limit of flow stress be assumed to alleviate this issue.

Analysis of Mechanical Properties and Microstructure of Inconel 706 Alloy using Rotary Forging (회전단조에 따른 Inconel 706 합금의 미세조직 및 기계적 특성 분석)

  • H.G. Kim;S.W. Jo;E.Y. Yoon;Y.S. Lee;Y.Y. Woo
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • The Inconel 706 alloy is a nickel-based super alloy and requires a large load for hot forging due to its excellent mechanical properties at high temperature. Rotary forging process is an innovative metal forging process where workpiece is gradually deformed by the revolving conical upper die with an inclination angle. This process allows that the workpiece is partially in contact with an upper die during the process so that the press force is considerably lower compared with the conventional upsetting process. In this study, experiments of rotary forging process and conventional upsetting process for cylindrical parts using Inconel 706 where conducted to investigate the formability of rotary forging process. And microstructure analysis and mechanical properties of Inconel 706 were performed to investigate the effect of rotary forging process on the material property.

Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계)

  • 김홍석;윤재웅;송종호;문인석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.210-215
    • /
    • 2003
  • A terminal pin, which is a part of high-voltage capacitors, has a head section of plate-shaped geometry with 0.8 thickness. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this paper, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, the geometry of the initial billet was determined by three dimensional finite element analysis in order to avoid defects in blanking process and intermediate forging processes were designed by applying design rules and two dimensional FE analysis. In addition, cold forging tryouts were conducted by using the die sets which were manufactured based on the designed process sequence.

  • PDF

Finite Element Simulation of a Pore Closing Process during Upsetting in Open Die Forging (자유단조에서 업세팅 공정 중 기공 압착 과정의 유한요소 시뮬레이션)

  • Lee, M.C.;Cho, J.H.;Choi, I.S.;Jang, S.M.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.79-83
    • /
    • 2008
  • We carry out three-dimensional simulation of pore closing processes during upsetting in open die forging. Several pores on a plane section of a cylindrical material are traced at the same time and the results of hydrostatic pressure and effective strain are discussed to reveal the parameters affecting pore closing phenomena. Five different sizes of pores are also investigated by simulation to reveal the pore size effect in pore closing during upsetting. AFDEX 3D is employed for this study.

  • PDF

Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength (1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

Comparision between Forward Extrusion and Upsetting Process for Preform with Stepped Shape (단 달림 형상의 예비성형체 성형에 대한 전방압출과 업셋팅 공정의 비교)

  • Song D. H.;Park Y. B.;Kim M. E.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.82-85
    • /
    • 2000
  • In cold forging, the final product is usually given by multi-stage process and the preform with stepped shape can be manufactured through the various forging method. The forward extrusion and upsetting processes for preform with stepped shape have been analyzed by using the rigid-plastic finite element analysis code, InteFORM and compared for load and stroke according to ae reduction of weを An engineer should select the proper processes considering the capacity and the stroke of the corresponding press in the forging of the preform with stepped shape.

  • PDF