• 제목/요약/키워드: upset pressure

검색결과 50건 처리시간 0.021초

경량화 피스톤 로드에 사용되는 SM45C/SM45C-Pipe의 마찰용접시 업셋압력이 미치는 영향 (Effect of Upset pressure on weldability in the Friction Welding of SM45C-Solid and SM45C-Pipe which is used in the Piston-Rod)

  • 민병훈;최원용;민택기
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.36-43
    • /
    • 2008
  • This research is tendencious to manufacture solid piston-rod of shock absorber as hollow piston-rod using friction welding. The SM45C has been welded to the SM45C-pipe in order to investigate the effect of upset pressure on friction weldability. The friction time and upset pressure was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. When the upset pressure is sufficient, gets the high tensile strength. The optimal welding conditions were n=2,000rpm, $P_1$=55MPa, $P_2$=95MPa, $t_1$=1.5sec, $t_2$=2.0sec when the total upset length is 4.5mm.

고강도 알루미늄 합금 A7075-T6의 마찰용접성에 관한 연구

  • 강성보
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.71-75
    • /
    • 1998
  • This study deals with the friction weldability of A7075-T6 having high specific strength. The friction welding conditions used are rotation speed 2000rpm, friction pressure 40MPa, friction time 1.5sec, upset pressure 40~100MPa, upset time 5sec. First, upset length was measured by displacement transducer. The plastic flow in 7075-T6 weld generates convex lens shaped resion by friction and concave lens shaped resion by axial force. Under the condition of upset pressure 85MPa, the friction welds have tensile strength of 552MPa and shear strength of 262MPa.

  • PDF

국산 SPS5 스프링강의 마찰용접에 관한 연구 (A Study on Friction Welding of Localized SPS5 Spring Steel)

  • 정순억
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.803-808
    • /
    • 2000
  • This thesis studied whether friction welding of SPSS, localized torsion bar material could be accomplished or not. And then optimum welding conditions were examined and leaded through tensile, impact, torsion and hardness test after postweld heat treatment of the actual field condition. Obtained results were as follows; Linear relationship was existed between heating time and total upset, and a quadratic equation model could be made between tensile strength and heating time. Optimum welding conditions with fine structure were as follows in case total upset(U)=8.5mm; the number of rotations(n)=2,000 rpm, heating pressure($p_1$)=80MPa, upset pressure($p_2$)=200MPa, heating time($t_1$)=4sec, upset time($t_2$)=3 sec.

  • PDF

마찰압접에 의한 Cu와 Ti 압접부의 기계적 특성에 관한 연구 (A study on the mechanical properties of copper-titanium friction-welded joint)

  • 김성연;연윤모;김대업;정승부;서창제
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.192-195
    • /
    • 2000
  • This paper describes a fundamental investigation of the friction welding condition for pure copper/pure titanium and the effect of friction time, upset pressure on the mechanical and metallurgical properties of friction welding. Under the constant upset pressure, the tensile strength make a little difference with an increase in friction time. At the constant friction time, the tensile strength increased with an increase in upset pressure. The tensile fracture of Cu to Ti joint occurred in Cu base material near interface.

  • PDF

WCu-Cu 전기접점의 마찰용접 특성 연구 (A Study on Friction weldability of Copper-Tungsten Sinterd Alloy to Copper)

  • 안용호;윤기갑;민택기;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1934-1937
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction-welded to a tough pitch copper (Cu) in order to investigate friction weldability. The tensile strength of the friction welded joint was increased up to 87% of the Cu base metal under the condition of friction time 1.0 see, friction pressure 40MPa and upset pressure 100MPa, upset time 5.0 sec. And it is related to upset pressure rather than friction time. Mixed layer was formed in the Cu adjacent weld interface and W particles which were included in mixed layer could induce fracture in the Cu adjacent to the weld interface. Thickness of mixed layer was reduced as upset pressure increase.

  • PDF

Metal Bearing 마찰용접면의 기계적 성질에 관한 연구 (A study on mechanical properties of friction weld interface in metal bearing)

  • 오세욱;이영호;민택기
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.20-26
    • /
    • 1990
  • In this study, to make research on its optimum condition in friction weld when the heating pressure is change during 1.6 to 3.0 $kgf/mm^2$, the experiment was performed with metal bearing under various condition; 1600 r.p.m spindile speed, 0.6 $kgf/mm^2$ preheating pressure, upset pressure 2.6 $kgf/mm^2$, 0.5 seconds preheating time, 1.7 seconds heating time, water and air was ejected 6 $kgf/mm^2$ into the bushing. On the basis of the experimental results, the following conclusion are drawn; 1) At the area of weld interface, the heardness is shown the maximum value and heat-affected zone about 0.5mm both sides. 2) Bending strength is shown the optimum heating pressure 2.4 kgf/mm. 3) With the approach of the flash, Sn is increased only 2 mm in A-alloy structure.

  • PDF

전기접점용 이종금속 WCu-Cu 접합재의 마찰압점 특성 (Properties of Friction Welding of Dissimilar Metals WCu-Cu Weld for Electrical Contact Device)

  • 안용호;윤기갑;민택기;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권4호
    • /
    • pp.239-245
    • /
    • 2000
  • A copper-tungsten sintered alloy(WCu) has been friction-welded to a tough pitch copper (Cu) in order to investigate friction weldability. The maximum tensile strength of the SWu-Cu friction welded joints had cp to 96% of those of the Cu base metal under the condition of friction time 0.6sec, friction pressure 45MPa, upset pressure 125MPa and upset time 5.0sec. And it is confirmed that the tensile strength of friction welded joints are influenced highly by upset pressure rather than friction time. And it is considered that mixed layer was formed in the Cu adjacent side to the weld interface, W particles included in mixed layer induced fracture in the Cu adjacent side to the weld interface and also, thickness of mixed layer was reduced as upset pressure increase.

  • PDF

동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접에서 마찰압력이 접합강도와 파단특성에 미치는 영향 (Effects of Friction Pressure on Bonding Strength and a Characteristic of Fracture in Friction Welding of Cu to Cu-W Sintered Alloy)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.90-98
    • /
    • 1997
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of friction pressure on bonding strength and a charicteristic of fracture. The tensile strength of the friction welded joint was increased up to 90% of the Cu base metal under the condition of friction time 1.2 sec, friction pressure 4.5kgf/$\textrm{mm}^2$ and upset pressure 10kgf/$\textrm{mm}^2$. From the results of fracture surface analysis, the increase of friction pressure could remarkably decrease the force and the time to be normally acted on weld interface. The W particles which were included in the plastic zone of Cu side could induce fracture adjacent to the weld interface because their existance in Cu induces a decrease in available section area and an increase in notch effect. Therefore, the tensile strength was decreased at high friction pressure (6kgf/$\textrm{mm}^2$) because the destruction of W was increased by an increase in mechanical force and crack was formed at weld interface.

  • PDF

관성 마찰용접 공정에서 심층 신경망을 이용한 업셋 길이와 업셋 시간의 예측 (Prediction of Upset Length and Upset Time in Inertia Friction Welding Process Using Deep Neural Network)

  • 양영수;배강열
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.47-56
    • /
    • 2019
  • A deep neural network (DNN) model was proposed to predict the upset in the inertia friction welding process using a database comprising results from a series of FEM analyses. For the database, the upset length, upset beginning time, and upset completion time were extracted from the results of the FEM analyses obtained with various of axial pressure and initial rotational speed. A total of 35 training sets were constructed to train the proposed DNN with 4 hidden layers and 512 neurons in each layer, which can relate the input parameters to the welding results. The mean of the summation of squared error between the predicted results and the true results can be constrained to within 1.0e-4 after the training. Further, the network model was tested with another 10 sets of welding input parameters and results for comparison with FEM. The test showed that the relative error of DNN was within 2.8% for the prediction of upset. The results of DNN application revealed that the model could effectively provide welding results with respect to the exactness and cost for each combination of the welding input parameters.

동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접 특성에 미치는 업셋압력의 영향에 관한 연구 (Effects of Upset Pressure on Weldability in the Friction Welding of Cu to Cu-W Sintered Alloy)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.69-76
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of upset pressure on friction weldability. Under the condition of friction time 0.8sec, upset pressure 150MPa, the tensile strength and Charpy impact value of the friction welded joint were 336MPa, $400KJ/m^2$ respectively. And highest temperature of the weld measured was below $800^{circ}K$ which is very lower than melting point of Cu($1356^{circ}K$). Under the same conditions, W grains picked up in Cu matrix from Cu-W profitably affected on these mechanical fracture, and were dispersed in Cu by plastic flow during brake time.

  • PDF