• Title/Summary/Keyword: upper homogeneous, modular copoint.

Search Result 1, Processing Time 0.013 seconds

A CHARACTERIZATION OF PROJECTIVE GEOMETRIES

  • Yoon, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.215-219
    • /
    • 1995
  • The most fundamental examples of (combinatorial) geometries are projective geometries PG(n - 1,q) of dimension n - 1, representable over GF(q), where q is a prime power. Every upper interval of a projective geometry is a projective geometry. The Whitney numbers of the second kind are Gaussian coefficients. Every flat of a projective geometry is modular, so the projective geometry is supersolvable in the sense of Stanley [6].

  • PDF