• Title/Summary/Keyword: upper flash Point

Search Result 42, Processing Time 0.026 seconds

Measurement and Prediction of Fire and Explosion Characteristics of n-Butylacetate (초산부틸의 화재 및 폭발 특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.25-31
    • /
    • 2017
  • The flash point, explosion limits, autoignition temperature(AIT) are important combustible properties which need special concern in the chemical safety process that handle hazardous substances. For the evaluation of the flammable properties of n-butylacetate, this study was investigated the explosion limits of n-butylacetate in the reference data. The flash points, fire points and AIT by the ignition delay time of n-butylacetate were experimented. The lower flash points of n-butylacetate by using the Setaflash and Pensky-Martens closed-cup testers were $24^{\circ}C$ and $26^{\circ}C$, respectively. The flash points of n-butylacetate using the Tag and Cleveland open cup testers are measured $31^{\circ}C$ and $40^{\circ}C$, respectively. And the fire points of n-butylacetate by the Tag and Cleveland open cup testers were measured $32^{\circ}C$ and $41^{\circ}C$. The AIT of n-butylacetate measured by the ASTM 659E tester was measured as $411^{\circ}C$. The lower explosion limit of lower flash point $24^{\circ}C$, which was measured by the Setaflash tester, was calculated to be 1.40 vol%. Also, the upper explosion limit of upper flash point $67^{\circ}C$ the Setaflash tester was calculated to be 12.5 vol%.

Study on the Flash Point Determination of 2-Propanol-Toluene Mixtures (2-프로판올과 톨루엔 혼합물질의 인화점 측정에 관한 연구)

  • 목연수;최재욱;김영일;최일곤;하동명
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.114-119
    • /
    • 1997
  • The lower flash points and upper flash points of 2-propanol and toluene mixtures were determined by air-blowing method instead of Tag-closed flash point tester. The relations between the flash points and the composition of the mixtures are as follows, $T_{F.L}=4.3182+6.0909X_1$ $T_{F.U}=39.3636-2.9091X_1$ As results, the experimental data and the estimated values from the relations are considerably agreed, and we could plotted the relative diagram between flash points and the explosive range.

  • PDF

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

The Measurement of Combustible Properties of Cyclohexanol (사이클로헥산올의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2014
  • For the safe handling of cyclohexanol, this study was investigated the explosion limits of cyclohexanol in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of cyclohexanol by using closed-cup tester were experimented in$60^{\circ}C{\sim}64^{\circ}C$. The lower flash points of cyclohexanol by using open cup tester were experimented in $66^{\circ}C{\sim}68^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for cyclohexanol. The AIT of cyclohexanol was experimented as $297^{\circ}C$. The lower explosion limit (LEL) and the upper explosion limit UEL) by the measured the lower flash point and the upper flash point of cyclohexanol were calculated as 0.95 Vol% and 10.7 Vol%, respectively.

The Study on Measurement and Prediction of Combustible Properties for Aniline (아닐린의 연소특성치의 측정 및 예측에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2014
  • For the safe handling of aniline, this study was investigated the explosion limits of aniline in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of aniline by using Setaflash and Penski-Martens closed-cup testers were experimented $66^{\circ}C$ and $73^{\circ}C$, respectively. The lower flash point aniline by using Tag and Cleveland open cup testers were experimented $72^{\circ}C$ and $78^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for aniline. The experimental AIT of aniline was $590^{\circ}C$. The calculated LEL and UEL by using the measured low flash point and upper flash point were 1.16 Vol.% and 8.36 Vol.%, respectively.

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA) (tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.17-24
    • /
    • 2019
  • The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.

A Study on the Characteristics of Flammability for Organic Solvents of Three Component Systems (3성분계 유기용제의 인화특성에 관한 연구)

  • 임우섭;목연수;최재욱;최일곤;하동명;조태제
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 1999
  • This study was accomplished by measuring the lower and upper flash point with air blowing method and grasping the characteristics of flammability for the three component systems, which are made up of the Benzene-Toluene-o-Xylene and Methylethylketone-Toluene-o-Xylene. These three component systems are widely used in the various industrial fields together with the development of industry. The results are as follows ; 1 ) Isothermal line is plotted on the triangular diagram for flash points determined in each solutions. From this line, the mixed compositions which indicated the same lower and upper flash points in each different composition could be read on this diagram, if the composition of mixtures are known. 2) Lower and upper explosion limits obtained from the flash points determined for the three component solution are compared with the value calculated from Le Chatelier's law. Especially the lower explosion limits are in a good agreement with the calculated values.

  • PDF

The Compatibility of MSDS through the Investigation of the Combustible Properties for MEK (MEK의 연소특성 고찰을 통한 MSDS의 적정성)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.36-41
    • /
    • 2008
  • For the safety design and operation of many chemical process, it is necessary to know certain explosion limit, flash point and autoignition temperature(AIT) of handling substances. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of MEK(methyl ethyl ketone), explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. And flash point and AIT for MEK were experimented. By using the literatures data, the lower and upper explosion limits of MEK recommended 1.8 vol% and 11.0 vol%, respectively. In this study, measured the lower and upper flash points of MEK were $-5^{\circ}C$ and $22^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for MEK, and the experimental AIT of MEK was $507^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of MEK is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

The Measurement and Investigation of Fire and Explosion Characteristics of Isopropyl Alcohol (이소프로필 알코올의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • For the safe handling of isopropyl alcohol, the explosion limits were investigated. The lower flash points, upper flash points, fire point, and AITs(autoignition temperatures) by ignition time delay for isopropyl alcohol were experimented. By using literature data, the lower and upper explosion limits of isopropyl alcohol were recommended as 2.0 and 12.0 vol%, respectively. The lower flash points of isopropyl alcohol were experimented $12{\sim}14^{\circ}C$ by using closed-cup tester and $18{\sim}19^{\circ}C$ by using open cup tester. And the upper flash points of isopropyl alcohol was experimented $38^{\circ}C$ by using Setaflash closed-cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus was $463^{\circ}C$.

The Flash Points of the Butylacetate+2-Propanol System Measured By Air Blowing Tester

  • Ha, Dong Myeong;Lee, Sung Jin;Mok, Yun Soo;Choi, Jae Wook
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • The lower and upper flash points of the flammable binary system, butylacetate+2-propanol were measured by air blowing tester. The shape of the concentration-temperature region of flash depended on the components of the mixture in solution. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on Van Laar equation. Good qualitative agreement was obtained with these models. The prediction results of these models can thus be applied to incorporate inherently safer design for chemical process, such as the determination of the safe storage conditions for flammable solutions.