• 제목/요약/키워드: upper and lower limits

검색결과 178건 처리시간 0.024초

Setaflash 장치를 이용한 노말 알코올류의 상부인화점 측정에 의한 폭발상한계의 예측 (Prediction of Upper Explosion Limits(UEL) by Measurement of Upper Flash Point Using Setaflash Apparatus for n-Alcohols)

  • 하동명
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.35-40
    • /
    • 2010
  • Explosion limit and flash point are the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, in order to predict upper explosion limits(UEL), the upper flash point of n-alcohols were measured under the VLE(vapor-liquid equilibrium) state by using Setaflash closed cup tester(ASTM D3278). The UELs calculated by Antoine equation using the experimental upper flash point are usually lower than the several reported UELs. From the given results, using the proposed experimental and predicted method, it is possible to research the upper explosion limits of the other flammable substances.

3성분계 유기용제의 인화특성에 관한 연구 (A Study on the Characteristics of Flammability for Organic Solvents of Three Component Systems)

  • 임우섭;목연수;최재욱;최일곤;하동명;조태제
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.120-126
    • /
    • 1999
  • This study was accomplished by measuring the lower and upper flash point with air blowing method and grasping the characteristics of flammability for the three component systems, which are made up of the Benzene-Toluene-o-Xylene and Methylethylketone-Toluene-o-Xylene. These three component systems are widely used in the various industrial fields together with the development of industry. The results are as follows ; 1 ) Isothermal line is plotted on the triangular diagram for flash points determined in each solutions. From this line, the mixed compositions which indicated the same lower and upper flash points in each different composition could be read on this diagram, if the composition of mixtures are known. 2) Lower and upper explosion limits obtained from the flash points determined for the three component solution are compared with the value calculated from Le Chatelier's law. Especially the lower explosion limits are in a good agreement with the calculated values.

  • PDF

Setaflash 장치를 이용한 산류와 케톤류의 폭발상한계 예측 (Prediction of Upper Explosion Limits (UEL) of Acids and Ketones by Using Setaflash Tester)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제25권2호
    • /
    • pp.114-119
    • /
    • 2011
  • 폭발한계와 인화점은 가연성물질의 화재 및 폭발의 위험성을 결정하는데 중요한 연소특성치이다. 본 연구에서는 산류와 케톤류의 폭발상한계를 예측하기 위해서, 평형상태에서 인화점을 측정하는 Setaflash 밀폐식 장치(ASTM D3278)를 사용하여 이들의 상부인화점을 측정하였다. 측정된 상부인화점을 이용하여 Antoine 식에 의한 계산된 폭발상한계는 기존의 문헌값들보다 약간 낮게 나타났다. 본 연구에서 제시한 실험 및 예측 방법을 이용하여 다른 가연성물질의 폭발상한계 예측이 가능해 졌다.

양론계수를 이용한 가연성가스와 증기의 폭굉한계 예측 (Prediction of the Detonation Limit of the Flammable Gases and Vapors Using the Stoichiometric Coefficient)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제22권3호
    • /
    • pp.228-233
    • /
    • 2008
  • 폭굉한계는 가연성물질의 화재 및 폭발 위험성을 결정하기 위해 사용되는 중요한 연소 특성치 가운데 하나이다. 본 연구에서는 가연성혼합물의 구성하는 각 순수성분의 연소열과 기상 조성을 이용하여 폭발한계를 예측하였다. 제시된 방법론에 의한 계산값은 적은 오차범위에서 문헌값과 일치하였다. 따라서 본 연구에서 제시한 방법론이 다른 가연성물질의 폭굉한계 예측에 폭넓게 적용되기를 기대한다.

MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정 (The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS)

  • 하동명
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.

APPROXIMATE CONFIDENCE LIMITS OF THE RELIABILITY PERFORMANCES FOR A COLD STANDBY SERIES SYSTEM

  • SHI YIMIN;SRI XIAOLIN;XU YONG
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.439-445
    • /
    • 2005
  • This paper is to investigate the approximate confidence limits of the reliability performances (such as failure rate, reliability function and average life) for a cold standby series system. The Bayesian approximate upper confidence limit of failure rate is obtained firstly, and next Bayesian approximate lower confidence limits for reliability function and average life are presented. The expressions for calculating Bayesian lower confidence limits of the reliability function and average life are also obtained, and an illustrative example is examined numerically by means of the Monte-Carlo simulation. Finally, the accuracy of confidence limits is discussed.

가연성물질의 폭발한계에 관한 연구 -알코올화합물의 폭발특성치 및 폭발한계의 온도의존성 예측- (A Study on Explosive Limits of Flammable Materials - Prediction of Explosive Properties and Temperature Dependence of Explosive Limits for n-Alcohols -)

  • 하동명
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.93-100
    • /
    • 1999
  • By using literature data, the empirical equations have been derived which describe the interrelationships of explosion and other related properties of n-alcohols. The properties which have been correlated data are : lower and upper explosive limits, heats of combustion, carbon numbers. Also, the new equation for predicting the temperature dependence of lower explosive limits(LEL) of n-alcohols on the basis of explosive limits, heats of combustion, flame propagation theory and mathematical method is proposed. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given explosive properties. by using the proposed equations, it is possible to predict the other properties. It is hoped eventually that this method will permit the estimation of the explosive properties of alcohol with improved accuracy and the broader application for other compounds.

  • PDF

노말헥사데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Hexadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

노말펜타데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Pentadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

노말테트라데칸의 연소특성치 측정에 의한 위험성 평가 (The Evaluation of Hazard by Measurement of Combustible Characteristics of n-Tetradecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.70-76
    • /
    • 2012
  • For the safe handling of n-tetradecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-tetradecane were calculated. The lower flash points of n-tetradecane by using closed-cup tester were measured $104^{\circ}C$ and $112^{\circ}C$. The lower flash points and fire point of n-tetradecane by using open cup tester were measured $113^{\circ}C$ and $115^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tetradecane. The experimental AIT of n-tridecane was $207^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $104^{\circ}C$ and upper flash point $140^{\circ}C$ for n-tetradecane were 0.63 Vol.% and 3.18 Vol%.