• Title/Summary/Keyword: uplift behavior

Search Result 103, Processing Time 0.032 seconds

Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber (소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-28
    • /
    • 1995
  • Based on the various test data acquired in the field, the large pressure chamber and the small pressure chamber, uplift behaviors and method of determining the ultimate uplift capacity of pile driven in small pressure chamber were studied. After uplift pile experienced 2 or 3 sudden slip due to increase of uplift load, complete pullout failure was occurred. Thus, it appears that the ultimate uplift capacity could be identified as the load at displacement where first slip occurs. The ultimate uplift capacity might be determined in every test and the disturbance after first uplift test could be recovered by adding one blow of the drop hammer, which had to depend on the model pile capacity.

  • PDF

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

Ground-Structure Seismic Interaction-Induced Rocking Behavior and the Uplift Behavior of Underground Hollow Structure (지반-구조물 동적 상호작용에 의한 Rocking현상과 그에 따른 지하 중공구조물의 부상거동)

  • Kang, Gi-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.85-94
    • /
    • 2012
  • This paper described a centrifuge study in order to investigate ground-underground hollow structure interaction-induced rocking behavior in liquefied ground. Uplift of the underground hollow structures is initiated due to liquefaction in sandy grounds when the ground is exposed to a strong shaking during earthquakes because the apparent unit weight of these structures is smaller than that of the liquefied soil. In order to evaluate the dynamic behavior of the underground hollow structure and the effects of original subsoil during the uplifting, model tests were performed by changing the relative density of the original subsoil and installing an acrylic box as a trench. The results of the present study show that rocking behavior of the underground hollow structure due to shear deformation of the surrounding subsoil or lateral movement from the original subsoil contributed to large magnitude of the uplift due to strong shaking.

Model studies of uplift capacity behavior of square plate anchors in geogrid-reinforced sand

  • Keskin, Mehmet S.
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.595-613
    • /
    • 2015
  • An experimental investigation into the uplift capacity of horizontal square plate anchors in sand with and without geogrid reinforcement is reported. The parameters investigated are the effect of the depth of the single layer of geogrid, vertical spacing of geogrid layers, number of geogrid layers, length of geogrid layers, the effects of embedment depth, and relative density of sand. A series of three dimensional finite element analyses model was established and confirmed to be effective in capturing the behaviour of plate anchor-reinforced sand by comparing its predictions with experimental results. The results showed that the geogrid reinforcement had a considerable effect on the uplift capacity of horizontal square plate anchors in sand. The improvement in uplift capacity was found to be strongly dependent on the embedment depth and relative density of sand. A satisfactory agreement between the experimental and numerical results on general trend of behaviour and optimum geometry of reinforcement placement is observed. Based on the model test results and the finite element analyses, optimum values of the geogrid parameters for maximum reinforcing effect are discussed and suggested.

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Numerical analysis of an innovative expanding pile under static and dynamic loading

  • Abdullah Cheraghi;Amir K. Ghorbani-Tanha
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.453-462
    • /
    • 2023
  • Designing pile foundations subjected to the uplift forces such as buildings, oil platforms, and anchors is becoming increasingly concerned. In this paper, the conceptual design of a new type of driven piles called expanding pile is presented and assessed. Some grooves have been created in the shaft of the novel pile, and some moveable arms have been designed at the pile tip. At first, static analyses using the finite element method were performed to evaluate the effectiveness of the innovative pile on the axial bearing capacity. Then its effect on seismic behavior of moment frame is considered. Results show that the expanding arms were provided an ideal anchorage system because of the soil's noticeable locking-up effect increasing uplift bearing capacity. For example at the end of the static tensile loading procedure, displacement decrement up to 55 percent is observed. In addition, comparing the uplift bearing capacity of the usual and new pile with different lengths in sand and clay layers shows noticeable effect and sharp increase up to about two times especially in longer piles. Besides, a sensible reduction in the seismic response and the stresses in the beam-column connection between 23-36 percent are achieved that ensures better seismic behavior of the structures.

A Model Test on Uplift Behavior of Plate Anchor (Plate Anchor의 인발거동에 관한 모형실험)

  • Kim, Seo Seong;Lee, Sang Duk;Koo, Ja Kap;Jeon, Mong Gak;Yoo, Keon Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1219-1227
    • /
    • 1994
  • For Determination of the ultimate uplift capacity, the failure mechanism of the foundation by uplift should be correctly known. However, studies on the variation of the failure mechanism with the embedment ratio of anchor plate among those factors governing the uplift resistance are scarce. In this study. in an attempt to observe more clearly the variation of the failure mechanism with embedment ratio and to check applicability of existing formulae for the ultimate uplift capacity. a model test was performed with ground made of carbon rods, simulating a plane strain conditions. As a result, failure characteristics of shallow and deep anchor conditions were clearly classified. It was found that the analysis of a shallow anchor should be made prior to determination of the ultimate uplift capacity of a deep anchor.

  • PDF