• Title/Summary/Keyword: upland farming

Search Result 102, Processing Time 0.027 seconds

Case Study on Organic Agricultural Techniques in Japan (일본의 유기농업 기술에 관한 사례연구-유기농업 실천농가를 중심으로-)

  • ;保田茂
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.67-77
    • /
    • 1996
  • The Organic agricultural techinques were investigated through the observations made for 3 years of the actual conditions of a farmer who has been practicing organic agriculture over 21 years. The farmer was a member of the Ichijima-cho Organic Agriculture Association. The Farmer had not performed much of the organic agricultural techinques at the beginning of his farming history. However, he has gradually developed techniques upon the experiences with trial and error. The notable characteristic of his basic organic agriculture was the utilization of a suitable organic fertilizer to make the soil fertile. Crop damages by diseases and insect pests were prevented through a fertile soil, raising of good seedlings, adoption of tolerant varieties and planting at a wide spacing and consequently considering not to use chemical pesticides. Introduction of power weeder for weed control and paddy-upland crop rotation reduced the cost of production for farming. The crop pattern and method of land us such as mix cropping, crop rotation and conversion of paddy field-upland fieldd were appeared to be very important in organic agriculture. The organic agricultural techniques get systematized upon the adaptation the regional ecology and the development of skills of the farmer. The most important point to achieve the success in organic agriculture system is not only by the development of the technical matters but also by the building of healthy relation and understandings between producers and consumers.

  • PDF

Chemical and Biological Properties of Soils Converted from Paddies and Uplands to Organic Ginseng Farming System in Sangju Region

  • Lim, Jin-Soo;Park, Kee-Choon;Eo, Jinu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.500-505
    • /
    • 2014
  • In recent years, organic ginseng cultivation has increased because customers prefer organic ginseng products due to the morphological quality as well as the safety such as the residuals of chemically-synthesized pesticides. Therefore, some of paddy and upland fields were converted into organic ginseng fields. Soil chemical properties, soil microflora, and soil-inhabiting animals were investigated in paddy-converted and upland organic ginseng fields in Sangju city, Korea. There was few difference in the soil chemical properties, and the soil nutrient concentrations, such as nitrate-N, Av. $P_2O_5$ between the two field types, and exchangeable cations such as K and Ca were within the ranges which are recommended by the standard ginseng-farming manual. Changes in microflora were also assessed by analyzing phospholipid fatty acid composition. Overall, indicators of microbial groups were greater in the upland field than in the paddy-converted soil, but they were not significantly different. In addition, there was no significant change in the abundance of nematodes, collembolans, and mites between the two field types probably because of the high variation within the field types. In this study, it was suggested that soil chemical and biological properties for organic ginseng cultivation were greatly influenced by the variation of topography and soil management practices rather than field types. Further study may be needed to investigate the influence of these factors on soil chemical and biological properties in organic ginseng soils.

A study of Agricultural fatigue shoes - A comparative study of heat load by shoe type - (농작업화에 관한 연구 - 신발종류에 따른 열적 부담 비교연구 -)

  • 이경숙;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 1996
  • This study has intended to suggest fundamental data to develope and choose appropriate shoes for upland farming in order to prevent health deterioration of women workers and improve work effectiveness and reduce fatigue by wearing appropriate shoes. During 1995. 4. 28 - 5. 10, Fifty women workers in hot pepper farming were observed and major shoe types, which were rubber shoes, walking shoes, slippers, and rubber boots, were selected for the study. During 1995. 10. 9 - 31, two subjects were tested by wearing those shoes in the laboratory where the temperature was 24$\pm$1$^{\circ}C$ and relative humidity 50$\pm$5%RH. And the temperature & humidity on sole and in the shoes, the rectal temperature, skin temperature, blood pressure, pulse, lactate concentration of blood, Flickers' value and subjective sensation were measured. The results were as follows : 1. 84% of women workers mentioned that they need shoes improvement and the order of most frequent shoe types to be worn was rubber shoes, walking shoes, slippers, rubber boots. 2. The rate of women who were unsatisfied with shoes for upland farming is 38 percentages. The reason of unsatisfaction was that feet were in a sweat and alien substances were let into shoes. 3. The temperature & humidity on sole were the lowest in rubber boots during experiment(p<0.01). 4. The relative humidity in the shoes was the highest in rubber boots by 90% and the lowest in walking shoes by 72% during rest And the humidity in slippers and walking shoes were significantly low in experiment(p<0.001). 5. Rubber boots showed the highest rise in rectal temperature by 0.2$^{\circ}C$ showing increase of core temperature (p<0.05). 6. The mean skin temperature during experiment was highest in rubber boots by 33.8$^{\circ}C$(p<0.001).

  • PDF

Reduction Efficiency Analysis of Furrow Vegetation and PAM (Polyacrylamide) Mulching for Non-Point Source Pollution Load from Sloped Upland During Farming Season (경사밭 고랑 식생 및 PAM (Polyacrylamide) 멀칭에 따른 영농기 비점오염 저감효과 분석)

  • Yeob, So-Jin;Kim, Min-Kyeong;An, Nan-Hee;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • As a result of climate change, non-point source pollution (NPS) from farmland with the steep slope during the rainy season is expected to have a significant impact on the water system. This study aimed to evaluate the effect of furrow mulching using alfalfa and PAM (Polyacrylamide) materials for each rainfall event, while considering the load characteristics of NPS. The study was conducted in Wanju-gun, Jeollabuk-do, in 2022, with a testbed that had a slope of 13%, sandy loam soil, and maize crops. The testbed was composed of four plots: bare soil (Bare), No mulching (Cont.), Vegetation mulching (VM), and PAM mulching (PM). Runoff was collected from each rainfall event using a 1/40 sampler and the NPS load was calculated by measuring the concentrations of SS, T-N, T-P, and TOC. During farming season, the reduction efficiency of NPS load was 37.1~59.5% for VM and 38.2~75.7% for PM. The analysis found that VM had a linear regression correlation (R2=0.28~0.86, P-value=0.01~0.1) with elapsed time of application, while PM had a quadratic regression correlation (R2=0.35~0.80, P-value=0.1). These results suggest that the selection of furrow mulch materials and the appropriate application method play a crucial role in reducing non-point pollution in farmland. Therefore, further studies on the time-series reduction effect based on the application method are recommended to develop more effective preemptive reduction technologies.

No-till Farming System: Research Direction and Outlook in Korea

  • Kang, Hang-Won;Kim, Min-Tae;Kim, Kwang Seop;Jeon, Weon-Tai;Ryu, Jin-Hee;Seong, Ki-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.143-152
    • /
    • 2013
  • No-till farming system has been extensively studied all over the world as the effective method for maintaining the soil fertility. The general advantages of this system have been well known for reducing the labor, fuel, machinery, and irrigation cost as well as for increasing the soil quality through soil aggregation, water infiltration, microbial population and etc. Recently, it becomes more popular with the increase of interest on sustainable agriculture, especially because of its higher carbon sequestration potential compared to conventional tillage. Crop residue management should be essentially included to look forward to achieving the positive effect on reduction of greenhouse gas. Nonetheless, there are also negative opinions on effect of no-till farming system. For example, some researchers reported that soil physical properties were not improved by no-till under certain soil and climatic conditions. This means no-till farming systems were strongly affected by the soil characters and climatic conditions. Therefore, the researches to meet the specific-regional characters are greatly needed in order for no-till farming system to successfully settle in Korea. The objective of the review article is to present the future direction and perspective on no-till farming system in Korea. For this purpose, we summarized the results of domestic and foreign researches about no-till farming system until now. Specifically, the chapter on foreign research consisted of four parts: positive and negative effects, the effect in paddy soil, and latest research direction (2012-2013) of no-till farming systems. Whereas, review for domestic researches was divided into two main parts: paddy and upland soils. In the final chapter, the priorities for the optimum conservation tillage in Korea were discussed and proposed through the previous researches.

Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea (한국의 경사지 밭의 토양 및 물의 보전 관리 전략)

  • Yang, Jae-E.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.

An Analysis of Purchasing and Using Fertilizer by Farmers (농업인의 비료 구매 및 사용 실태에 관한 연구)

  • Choi, Yoon-Ji;Gim, Gyung-Mee;Lee, Jing-Young;Kang, Kyeong-Ha;Yun, Sun-Gang
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.687-711
    • /
    • 2009
  • Recently, environmental-friendly agriculture (EFA) has been pointed out as an alternative for the change of our agricultural conditions. But the excessive amount of nutrients have been used to farmland since 1960s, when the intensive farming method called "High-Input, High-Yield" was expanded in earnest. This study was conducted to examine and compare farmers' purchasing and using fertilizer. For these purpose, data were gathered from a total of 326 farmers of the nation wide (greenhouse horticulture 60, upland cultivating 177, fruit-growing 89). The findings were as follows: First, 70.6% of greenhouse horticulture farmers, 89% of upland-cultivating farmers, 76.3% of fruit-growing farmers purchased fertilizer in Nong-hyup (farmers' cooperative organization). Second, only 54.2% of the greenhouse horticulture farmers, 60.2% of the upland cultivating farmers and 70.4% of the fruit-growing farmers recognized the optimum level of fertilizer. So, governmental organizations and agricultural technology center should carry out various programs for informing the farmers of the right way to use fertilizer and to practice EFA.

  • PDF

Retrospection on Agricultural Mechanization Researches (농업기계화 연구에 대한 고찰)

  • 이동현;박원규
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 1999
  • At the time of discontinuing the publishing of RDA Journal of Farm management and agricultural engineering the present paper is to review the research results produced since 1962 to 1998. During the three decades, from 1960s to 1980s, the main research efforts were focused o mechanization of rice farming which contributed in food grain productions. In the 1990s, the research direction was shifted to horticultural productions and producing high quality agricultural products. We had put stress on practical use of farm mechanization, mainly on transplanting and seeding operation for rice and upland and horticultural crops productions and harvest and threshing machinery developments, in which we thought our research direction had not been quite right. However, in the future we are going to promote mechanization on livestock and upland crops productions. Furthermore, we have a plan to employ cutting edge technologies in agricultural machinery developments in order to automate and unman all farm operations satisfying the needs of advanced agricultural mechanization technology in the twenty first century.

  • PDF

Economic Feasibility of Hill Land Development (산지개발(山地開發)의 경제성)

  • Kim, Dong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.283-295
    • /
    • 1979
  • A new Farmland Expansion and Development Promotion Law was enacted in 1975. This law authorizes the Government to undertake development within a declared "reclamation area", wherever the land owners are unable to do so. In order to give additional impetus to conversion of waste hilly land into productive farmland, these hilly land development projects were conducted as large scale scheme which include soil fertility improvements such as the application of lime and phosphate. Farmland Expansion and Development Promotion Corps has attempted to undertake annual farm surveys in order to obtain some information about hilly land agriculture and farming operations within the reclamation project areas since 1976. As survey data accumulates, more and more clear picture of hilly land farming come to appear and enable us to conduct in-depth study. Effects of such upland reclamation include converting of previously unproductive slopeland into cultivable farmland for lucrative and commercial farming or food production. Furthermore, idle or marginal resources such as farm labor, equipment and compost would be fully employed. Socio-economic effects would include increases in land value and attitude change of farmers. On the other hand the preservation of natural environments might be damaged to the some extend by the projects. As shown in Table 7, the average farm size increased from 3,156 pyeong($3.3m^2$) to 5,562 pyeong, a 76.2% increase. The proportion of small farms with less than I ha dropped from 59.8% to 34.4%, but that of the large farms over 2 ha rose from 13.1% to 32.0% (See Table 8). The survey results indicate that as the farming on reclaimed uplands become time-honored, the acreage devoted for food crop production decreases against the economic crop growing acreage (see Table 6). For example, in the case of uplands reclaimed in 1972, the ratio of food crop acreages decreased from 99.7% in 1972 to 62.5% in 1977, whereas that of economic crop acreages increased from 0.3% in 1972 to 37.5% in 1977. The government used to actively encourage the farmers to carry out food crop production in the reclaimed upland targting toward the realization of self-sufficiency in food grains. It is, however, apparent that the farmers did hardly take the government advises as far as their economic interest were concerned. Yield per 10a. of various crops from the reclaimed uplands by year were surveyed as seen in Table 12. On the average, barley production in the reclaimed areas achieved 83.3% of the average unit yield from the existing upland in its 5 th year. Soybean yields showed a modest increase from 64% in the first year to 95%, in the 5 th year. In contrast, economic crops such as red pepper, totacco and radish achieved their maximum target yields in 3 years from starting to cultivate on the reclaimed farms. In order to test the post economic viability, an economic analysis was performed for each of selected subprojects on the basis of the data obtained through survey. The average actual internal economic rate of return on upland reclamation investments was found to be 20.3% which exceeded other types of projects of land and water development such as tidal land reclamation, irrigation or paddy rearrangement. The actual IRRs of subcategories of upland reclamation projects varied from 17.9% to 21.4% depending upon the kinds of cropping system adopted in each reclaimed areas such as food, economic, fruit or forage crops.

  • PDF

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.