• Title/Summary/Keyword: upland cultivation

Search Result 258, Processing Time 0.028 seconds

Breeding for Improvement of Fatty Acid Composition in Rapeseed Brassica napus L. XVI. Effect of Fertilizer level on the Oil Content and Fatty Acid Composition of Rapeseed (유채 지방산조성 개량육종에 관한 연구 - 제 16 보 유채 시비수준이 유지함량 및 지방산조성에 미치는 영향-)

  • Kwon, B.S.;Lee,J.I.;Kim, S.K.;Chee, Y.A.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.2
    • /
    • pp.198-202
    • /
    • 1984
  • This experiment was conducted to investigate the oil content, change of fatty acid composition affected by ferlilizer levels in upland and paddy field cultivation of rapeseed, The oil content with the fatty acid such as palmitic, linoleic and linolenic was increased in the winter crop on drained paddy field compared with those of upland field in which oleic and stearic fatty acid was increased. Unsaturated, good quality fatty acid content such as oleic and linoleic acid in the cultivation of upland field was higher by 2-5% than those of paddy field. Oleic and linoleic fatty acid contents showed increased with increment of nitrogen fertilizer up to 15kg/10a, and showed same trend until 80kg/ha fertilization level of phosphate and potassium in upland field but there was no effect in paddy field cultivation.

  • PDF

Assessment on Water Movement in Paddy-Upland Rotation Soil Scheduled for Ginseng Cultivation (답전윤환 인삼재배 예정지 토양의 물 이동특성 평가)

  • Hur, Seung-Oh;Lee, Yun-Jeong;Yeon, Byung-Ryul;Jeon, Sang-Ho;Ha, Sang-Geon;Kim, Jeong-Gyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.204-209
    • /
    • 2009
  • This study was conducted to assess water movement in paddy-upland rotation soil scheduled for ginseng cultivation through the measurement of infiltration and permeability of soil water. Soil sample was divided with four soil layers. The first soil layer (to 30cm from top soil) was loamy sand, the second and the third soil layers (30$\sim$70 ㎝) were sand, and the fourth (< 120 ㎝) was sandy loam. The soil below 130 ㎝ of fourth soil layer was submerged under water. The shear strength, which represents the resisting power of soil against external force, was 3.1 kPa in the first soil layer. This corresponded to 1/8 of those of another soil layer and this value could result in soil erosion by small amount of rainfall. The rates of infiltration and permeability depending on soil layers were 39.86 cm $hr^{-1}$ in top soil, 2.34 cm $hr^{-1}$ in 30$\sim$70 ㎝ soil layer, 5.23 cm $hr^{-1}$ and 0.18 cm $hr^{-1}$ in 70$\sim$120 ㎝ soil layer, with drain tile, and without drain tile, respectively. We consider that ground water pooled in paddy soil and artificial formation of soil layer could interrupt water canal within soil and affect negatively on water movement. Therefore, we suggest that to drain at 5 m intervals be preferable when it makes soil dressing or soil accumulation to cultivate ginseng in paddy-upland rotation soil to reduce failure risk of ginseng cultivation.

A Study on the Assessment of Growing Conditions and Production Capacity in the Upland-Field Area of Highland - Focused on Kimchi-Cabbage, Radish, Potato - (농업 생산기반 능력 및 재배여건을 이용한 고랭지 작물 주산지의 생산역량 분석 - 배추, 무, 감자를 중심으로 -)

  • Jung, Hyun-Woo;Kim, Dae-Sik;Bae, Seung-Jong;Park, Jung-Soo;Kim, Han-Joong
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2016
  • Recently, the cultivated area is reduced, the ratio of upland-field in the total cultivated area is increasing relative appeared in 36.2% in 1990 from 43.7% in 2013. If upland-field can be applied well designed-infrastructure, good income crop production is possible, however, maintenance of infrastructure and a significant portion of the upland-field is maintained under insufficient infrastructure. While imports of agricultural products expanded since the 2000s in progress, looking at the self-sufficiency of upland-field crops, it is reduced to from 90% to 42% for the pepper, it is from 90% to 74% for the garlic, cereals is reduced from 42% by 26%. As a result of these conditions, the competitiveness of farmers has weakened, the risk to meet the challenges of this area of production and supply reduction increased. This study was the first to conduct a basic evaluation index, data analysis and evaluation of indicators to diagnose the agricultural production capacity of the upland field. 12 kinds classified index of producing conditions from the natural environment and eight factors for the cultivation and production capabilities have developed for the assessment of productivity of upland-field (especially Kimchi cabbage). Through this regional imbalance was found, based on the production capabilities conditions are good in Haenam, Gangneung, Pyeongchang. 3 Regions have been low and the lowest Youngwol to 0.8992. Climate(Cultivation conditions) indicators of Mungyeong region is the highest, relatively low areas were in Taebaek. In particular, it is determined to be preferred that the area required for the enhancing the production environment based on providing the convenience for the producing and maintenance of the first production area. It is necessary Increasing part of mechanization, agro-industrial competitiveness through aggressive management plans for facilities as required in the process of post-harvest storage, processing, distribution line can be improved.

Assessment of Future Agricultural Land Use and Climate Change Impacts on Irrigation Water Requirement Considering Greenhouse Cultivation (시설재배를 고려한 미래 농지이용 변화와 기후변화가 관개 필요수량에 미치는 영향 평가)

  • SON, Moo-Been;HAN, Dae-Young;KIM, Jin-Uk;SHIN, Hyung-Jin;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.120-139
    • /
    • 2020
  • This study is to assess the future agricultural land use and climate change impacts on irrigation water requirement using CLUE-s(Conversion of Land Use and its Effects at Small regional extent) and RCP(Representative Concentration Pathway) 4.5 and 8.5 HadGEM3-RA(Hadley Centre Global Environmental Model version 3 Regional Atmosphere) scenario. For Nonsan city(55,517.9ha), the rice paddy, upland crop, and greenhouse cultivation were considered for agricultural land uses and DIROM(Daily Irrigation Reservoir Operation Model) was applied to benefited areas of Tapjeong reservoir (5,713.3ha) for Irrigation Water Requirement(IWR) estimation. For future land use change simulation, the CLUE-s used land uses of 2007, 2013, and 2019 from Ministry of Environment(MOE) and 6 classes(water, urban, rice paddy, upland crop, forest, and greenhouse cultivation). In 2100, the rice paddy and upland crop areas decreased 5.0% and 7.6%, and greenhouse cultivation area increased 24.7% compared to 2013. For the future climate change scenario considering agricultural land use change, the RCP 4.5 and RCP 8.5 2090s(2090~2099) IWR decreased 2.1% and 1.0% for rice paddy and upland crops, and increased 11.4% for greenhouse cultivation compared to pure application of future climate change scenario.

Disease and insect damage, growth and yield of sorghum, foxtail millet between rotational upland and continuing upland field

  • Yu, Je Bin;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Kim, Young-Jung;Ye, Min Hee;Lee, Gil Jun;Cho, Soo Been;Lee, Young Kyung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.349-349
    • /
    • 2017
  • This study was performed in order to investigate disease, insect damage, growth and yield characteristics of green maize by organic paddy-upland rotation system. This experiment also was to select optimum variety for organic paddy-upland rotation cultivation. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2016. The varieties used in this study are green maize of total 8 varieties. Green maize was planted at rotational upland field and continuing upland field and tested for comparison. In case of average occurrence of 4 major diseases for green maize, rotational upland field was higher than that of continuing upland field. Heukjinjuchal and Daehakchal were the lowest occurrence by less than 2% among 8 varieties. Average damage of 8 varieties by Ostrinia furnacalis larva, which is the main pest in green maize was higher in rotational upland field than that of continuing upland field. Chalok 4 and Heugjeom 2 were judged to be resistant varieties to 4 major diseases among 8 varieties. The average yield of green maize per 10a in rotational upland field decreased to 85% level of continuing upland field and Chalok 4 showed the highest yield by 789.0 kg/10a among 8 varieties. The most suitable varieties in organic paddy-upland rotation system were judged to be Chalok 4, Heukjinjuchal and Heukjeom 2.

  • PDF

The Effects of the Growth and Yield of Paddy Rice in the Upland Cultivation (수도 밭재배에 관한 연구)

  • Sang-Hyun Yoon;Yong-Jae Kim;Won-Yul Choi;Chang-Soon Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 1976
  • Two paddy rices and two upland rices were cultivated both in the paddy-field and in the upland in order to find out the effects of the different cultural environments on the growth and yield of the four varieties. Three plots (standard fertilizer without irrigation, standard fertilizer with irrigation and nitrogen-increased fertilizer with irrigation) were set in the upland and one plot (standard fertilizer with conventional water control) was set in the paddy-field. The weight of brown rice of paddy rices was higher in the paddy-field than in the upland, while that of upland rices was higher in the upland. The heading-date of paddy rices was later about a week in the upland than in the paddy-field. The maturity ratio and the weight of 1, 000 grains of upland were higher and heavier than those of paddy rices in both cultural conditions. The results show that it is very desirable for the culture of paddy rices to be cultivated under the upland condition, on the view point of its yield and quality compared with those of upland rices.

  • PDF

Effect of Nitrogen Application Rates on Nitrous Oxide Emission during Crop Cultivations in Upland Soil

  • Lee, Jong-Eun;Yun, Yeo-Uk;Choi, Moon-Tae;Jung, Suck-Kee;Nam, Yun-Gyu;Pramanik, Prabhat;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.205-211
    • /
    • 2012
  • BACKGROUND: Generally, nitrogen (N) fertilization higher than the recommended dose is applied during vegetable cultivation to increase productivity. But higher N fertilization also increases the concentrations of nitrate ions and nitrous oxide in soil. In this experiment, the impact of N fertilization was studied on nitrous oxide ($N_2O$) emission to standardize the optimum fertilization level for minimizing $N_2O$ emission as well as increasing crop productivity. Herein, we developed $N_2O$ emission inventory for upland soil region during red pepper and Chinese milk vetch cultivation. METHODS AND RESULTS: Nitrogen fertilizers were applied at different rates to study their effect on $N_2O$ emission during red pepper and Chinese milk vetch cultivation. The gas samples were collected by static closed chamber method and $N_2O$ concentration was measured by gas chromatography. The total $N_2O$ flux was steadily increased due to increasing N fertilization level, though the overall pattern of $N_2O$ emission dynamics was same. Application of N fertilization higher than the recommended dose increased the values of both seasonal $N_2O$ flux (94.5% for Chinese cabbage and 30.7% for red pepper) and $N_2O$ emission per unit crop yield (77.9% for Chinese cabbage and 23.2% for red pepper). Nitrous oxide inventory revealed that the $N_2O$ emission due to unit amount of N application from short-duration vegetable field in fall (autumn) season (6.36 kg/ha) was almost 70% higher than that during summer season. CONCLUSION: Application of excess N-fertilizers increased seasonal $N_2O$ flux especially the $N_2O$ flux per unit yield during both Chinese cabbage and red pepper cultivation. This suggested that the higher N fertilization than the recommended dose actually facilitates $N_2O$ emission than boosting plant productivity. The $N_2O$ inventory for upland farming in temperate region like Korea revealed that $N_2O$ flux due to unit amount of N-fertilizer application for Chinese cabbage in fall (autumn) season was comparatively higher than that of summer vegetables like red pepper. Therefore, the judicious N fertilization following recommended dose is required to suppress $N_2O$ emission with high vegetable productivity in upland soils.

Effect of Paddy-upland Rotation System on Soil Chemical Properties and Rice Yield (답전윤환형태별(畓田輪換形態別) 토양화학성(土壤化學性)과 수도생산성(水稻生産性) 변화(變化)에 관(關)한 연구(硏究))

  • Ahn, Sang-Bae;Motomatsu, T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.181-188
    • /
    • 1993
  • The effects of paddy-upland rotation and cropping system on the mineralization of soil organic nitrigen, on the change of organic matter and available phosphorus content in the soil, and on the rice yield and nutrients absorption were studied in Seokcheon fine-sandy loam soil. 1. In the incubation test mineralzed soil nitrogen and the nitrogen extracted by pH 7 phosphate buffer solutions were higher in the soils from every and two year rotation systems than continuous rice cultivation. In terms of cropping system potato-chiness cabbage-rice increased them more than soybean-rice system. 2. The change of soil organic matter and available phosphorus contents were not much in continuous rice cultivation, while in rotation system they decreased as the paddy-upland rotation frequency decreased. In terms of cropping system they decresed more in potato-Chinese cabbage-rice system compared with soybean-rice systems. 3. The rice yield was higher in the paddy-upland rotation system than that of continuous rice cultivation. However, the effects were decreased gradually every year, as shown by 26~20, 17~5, and 5~4% yield increase for first, second, and third year, respectively, in potato-Chinese cabbage-rice and soybean-rice system compared with continuous rice cultivation. 4. All the absorbed nutrient contents increased in every and two year rotation system compared with continuous rice cultivation. In terms of cropping system potato-Chiness cabbage-rice system increased them more compared with soybean-rice system.

  • PDF

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

Development of the Estimation System for Agricultural Water Demand (농업용수 수요량 산정 시스템 개발)

  • 이광야;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • To estimate agricultural water demand, many factors such as weather, crops, soil, cultivation method, crop coefficient and cultivation area, etc. must be considered. But it is not easy to estimate water demand in consideration of these factors, which are variable according to growth stage and regional environment. This study provides estimation system for agricultural water demand(ESAD) in order to estimate water demand easily and accurately, and arranges all factors needed for water demand estimation. This study identifies the application of estimation system for agricultural water demand with the data observed in the other studies, and analyzes nationwide agricultural water demand. The results are as follows. 1) The practice of different rice cultivation in the paddy field resulted in different water demands. Water depth and infiltration ratio in paddy are the most important factors to estimate water demand. The water depths in paddy simulated by ESAD is very similar to the observed ones. 2) Water demand of upland crops varies with the crops, soil, etc.. Effective rainfall estimated by daily routing of soil moisture varies according to the crops, soil, and effective soil zone(root depth). As crop root become grown, effective rainfall and an amount of irrigation water has been increased. 3) The current unit water demand of upland crops applied as 500mm or 550mm to estimate water demand does not reflect the differences caused by the crops, regional surrounding, weather condition, etc. Results from ESAD for the estimation of water demand of upland crops show that ESAD can simulate the actual field conditions reasonably because it simulates the actual irrigation practices with the daily routing of soil moisture.

  • PDF