• 제목/요약/키워드: upland cultivation

검색결과 258건 처리시간 0.024초

Breeding and Production Research Direction for Soybean Self-Sufficiency Improvement in Korea

  • Jee-Yeon Ko;Beom-Kyu Kang;Jeong-Hyun Seo;Jun-Hoi Kim;Su-Vin Heo;Man-Soo Choi;Jae-Bok Hwang ;Choon-Song Kim;Myeong-Gyu Oh
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.23-23
    • /
    • 2022
  • Recently, soybean production and market price are unstable, even if demand of soybean is maintained. Diverse conditions such as climate change, a decrease in rural population, and consuming affect food industry. In this situation, food security is soaring as important key-word again, and MAFRA is promoting policies for improving soybean self-sufficiency with the goal of 40% until 2030. The point of policy is to extend a production and stabilize a demand for soybean with supporting large-scale soybean paddy-field complex. According to the background, soybean breeding and production research in NICS are proceeded with three parts. First, production improvement with soybean cultivation land enlargement and high-yield cultivar development. Various growth period soybean cultivars for double cropping, irrigation management technologies in paddy field, and hyper-yield and specific-region adaptable cultivar development. Second, reduction of production expense with mechanized cultivation and digital-based field management technologies. Third, consumer-friendly and high quality soybeans with high protein cultivar for alternative protein usage and high food process-ability for soy milk, tofu, soybean sprouts, and grain usage. Each part need to be combined and advanced to improve soybean industry and soybean self-sufficiency.

  • PDF

소식재배용 이앙기 모판 이송간격에 따른 이앙정확도 분석 (Analysis of Transplanting Accuracy of Rice Transplanter for Low density Planting According to Transfer Distance to Seedling Tray)

  • 김원경;이상희;최덕규;박석호;강연구;문석표;천창욱;장성혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.30-35
    • /
    • 2024
  • Domestic rice is more expensive than imported products, so it is necessary to reduce production costs to secure competitiveness. Low-density planting developed in Japan is a cultivation technology that reduces labor and production costs without yield loss. The area of low-density cultivation is continuously increasing. However, research on how rice transplanters adapt to low-density planting has not been conducted. Therefore, this study was carried out to determine the optimal working conditions of a rice transplanter for low-density planting. Three types of rice transplanters were used and treated based on 3 conveying distance levels. The number of picked seedlings, pick missing rate, the number of planted seedlings, and the mis-planted rate were investigated to evaluate planting accuracy according to the transfer distance to the seedling tray. The results showed that the number of planted seedlings was 4.31~4.95 EA with an L1 seedling tray transfer distance (horizontal 9 mm, vertical 8 mm), but the mis-planted rate was higher than in other conditions. At L2 (horizontal 9 mm, vertical 10 mm) and L3 (horizontal 11 mm, vertical 8 mm) transfer distance conditions, the number of planted seedlings were 4.89-5.68 EA and 4.69-5.66 EA, respectively, with a low mis-planted rate of less than 3%. The results showed that if the transfer distance is adjusted properly, a rice transplanter can be used for low-density planting with high planting accuracy.

Furrow Cover Effects of Black Non-woven Fabric on Reduction of Nitrogen and Phosphorus Discharge from Upland Soil Used for Red Pepper Cultivation

  • Hong, Seung Chang;Kim, Min Kyeong;Jung, Goo Buk;So, Kyu Ho
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.671-676
    • /
    • 2015
  • Control of surface runoff from upland soil is essential to reduce nonpoint source pollution. The use of non-woven fabric as a soil cover can be helpful to control surface runoff. The field experiment was conducted to evaluate the furrow cover effects of black non-woven fabric on the nutrient discharge from upland soil used for red pepper cultivation. The experimental plots consisted of chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) treatment. Each nutrient material treatment plot has control (no furrow cover (NFC)) and black non-woven fabric cover treatment, respectively. The amount of nutrient application was chemical fertilizer of $190-112-149(N-P_2O_5-K_2O)kgha^{-1}$, cow manure compost of $29.5tonha^{-1}$, and pig manure compost of $7.9tonha^{-1}$ as recommended amount after soil test for red pepper cultivation. Compared to control (NFC), furrow cover treatment with black non-woven fabric reduced the amount of T-N discharge by 50% at CF treatment, 36.9% at CMC treatment, and 44.8% at PMC treatment. Furrow cover treatment with black non-woven fabric reduced the amount of T-P discharge by 37.1% at CF treatment, 49.9% at CMC treatment, and 63.4% at PMC treatment compared to control (NFC). The production of red pepper did not show significant difference. There was no weed occurring in furrow cover treatment plots with black non-woven fabric. Results from this study showed that the furrow cover with black non-woven fabric could play a significant role in reduce nutrient discharge from upland soil used for red pepper cultivation.

답전윤환토양(沓田輪換土壤)에서 질소무기화(窒素無機化)의 특성(特性)에 관(關)한 연구 (Mineralization of Nitrogen in Soils under Paddy-Upland Switching Cultivation Systems)

  • 안상배;모타마쯔 테르시아;연병렬;육창수
    • 한국토양비료학회지
    • /
    • 제25권2호
    • /
    • pp.133-137
    • /
    • 1992
  • 답전윤환포장(沓田輪換圃場)에서 토양질소(土壤窒素) 무기화양상(無機化樣相)의 몇가지 특성(特性)을 구명(究明)하여 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 1. 담수배양(湛水培養)한 질소무기화량(窒素無機化量)은 '90년(年)(2년차(年次))에서는 감자-배추구(區)>대두구(大豆區)>벼연작구(連作區)이었으나 '91년(年)(3년차(年次))에는 감자-배추구(區)>벼연작구(連作區)>대두구(大豆區)의 순(順)이었다. 2. 3년차(年次)('91년(年) 밭 상태조건(狀態條件)에서 생성(生成)된 토양질소무기화량(土壤窒素無機化量)은 감자-배추구(區)에서는 매년윤환구(每年輪換區)<전윤환(田輪換)이지만 대두구(大豆區)에서는 반대(反對)로 매년윤환구(每年輪換區)>전윤환(田輪換)이었다. 3. 토양(土壤)의 전질소(全窒素) 및 전탄소함량(全炭素含量)은 수도연작구(水稻連作區)에 비(比)하여 윤환구(輪換區)에서 낮아졌는데 특(特)히 대두윤환구(大豆輪換區)에서 현저히 낮아졌다. 4. 지력질소(地力窒素)의 판정기준법(判定基準法)으로 이용(利用)되는 인산완충용액법(憐酸緩衝溶液法)에 의한 가급태질소함량(可給態窒素含量)과 담수토양법(湛水土壤法)에 의한 $NH_4-N$ 생성량(生成量)과는 정(正)의 상관관계(相關關係)가 있었다.

  • PDF

Growth and yield characteristics of foxtail millet, proso millet and sorghum affected by paddy-upland rotation systems

  • Kim, Young Jung;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Yu, Je Bin;Ye, Min Hee;Shim, Kang Bo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.347-347
    • /
    • 2017
  • This study is performed to investigate the optimal cropping systems to allow cultivation of upland crops to the paddy rice land. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2015. In order to investigate growth and yield characteristics of foxtail millet, proso millet and sorghum by different paddy-upland rotation systems, three crops foxtail millet, proso millet and sorghum with four varieties of Samdachal, Samdamae, Kyeongkwan1, Hwanggeumjo in foxtail millet, Leebaekchal, Manhongchal, Hwangsilchal, Hwanggeumgijang in proso millet and Nampungchal, Moktaksusu, Aneunbangisusu, Hwanggeumchal in sorghum were examined. Four paddy-upland rotation systems of paddy-upland rotation, paddy-upland-upland rotation, paddy-upland-upland-upland rotation, and upland-paddy-upland rotation system were tested. Days from seeding to heading and ripening of foxtail millet was the shortest in the paddy-upland-upland-upland rotation system, but proso millet and sorghum did not show statistical difference among four rotation systems. In the average of culm length, paddy-upland-upland-upland rotation system showed the highest culm length in foxtail millet (141.5cm), proso millet (159.6cm) and sorghum (138.6cm) respectively among four paddy-upland rotation systems. In average yield per 10a, foxtail millet and proso millet showed the highest each 234.3kg/10a, 176.2kg/10a in paddy-upland-upland-upland rotation system, whereas sorghum was the highest 221.2kg/10a in paddy-upland-upland rotation system. The most suitable crop and varieties in paddy-upland rotation system was judged to be sorghum among three crops and suitable varieties were Samdachal in foxtail millet, Leebaekchal in proso millet and Nampungchal in sorghum respectively.

  • PDF

신간척지 벼 재배 농지의 답전윤환에 따른 토양 특성 및 작물 생산성 변화 (Effects of Paddy-Upland Rotation on Soil Characteristics and Crop Productivity in Rice Fields on Reclaimed Tidal land)

  • 오양열;김영주;이수환;류진희;김선;이정태;전재범;김길용
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.641-650
    • /
    • 2018
  • Paddy-upland rotation system is one of the important cropping system for improving soil quality and crop productivity. we conducted to investigate the effect of paddy-upland rotation system on soil properties and crop productivity in reclaimed tidal land. The paddy-upland rotation could be effective to conserve soil water contents and prevent from salt damage when cultivating upland crops. The first two years of maize cultivation after rice cultivation could be effective to secure stable production. However, in case of soybean crop, the rotation effect might be lower than that of maize. In the first year, the yield of soybean was 214 kg/10a. In the second and third year, the yields of soybean decreased consecutively to 152, 123 kg/10a respectively. In this paper, it would be suggested that maize be cultivated for up to two years and soybean be cultivated for one year after rice crop grown in reclaimed tidal land. This study could be provide basic data of the physico-chemical properties applicable to paddy-upland rotation system at reclaimed tidal lands.

식용 풋옥수수 수확 시험장치 설계 및 성능평가 (Performance Evaluation and Design of an Edible Fresh Corn Harvesting Machine)

  • 강나래;최일수;김영근;최용;유승화;우제근;현창식;김성국
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.74-79
    • /
    • 2019
  • In this study, an edible fresh corn harvest testing machine was designed and manufactured. And harvesting performance was analyzed through the field test. The testing machine is of the tractor attached type. It is connected to the tractor PTO shaft to transfer power to the each part of the harvesting machine. And it harvests fresh corn by one row through the processes of cutting, stem crushing, detaching, and collecting. The performance test was performed at PTO speed (540, 750, 1050 rpm, respectively), working speed (0.1, 0.15, 0.2 m/s, respectively), and cropping cultivation (row spacing·hill spacing 70·25 cm, 70·40 cm, 90·30 cm, respectively). The performance test was repeated three times in the 15 m section. The detachment loss ratio, uncollected crop ratio, damage ratio, and harvest ratio were analyzed. As a result of the performance test, it was analyzed that the PTO speed 540 rpm, running speed of 0.1 m/s, and row spacing·hill spacing 70·40 cm were the optimal condition.

평지 전작 유출수의 수문·수질 특성 모니터링 (Monitoring the Hydrologic Water Quality Characteristics of Discharge from a Flat Upland Field)

  • 박찬우;오찬성;최순군;나채인;황세운
    • 한국농공학회논문집
    • /
    • 제62권3호
    • /
    • pp.109-121
    • /
    • 2020
  • Converting the agricultural land-use of rice field to upland has been increasingly conducted as farmers encourages themselves to grow higher value-added crops on rice fields under the policy support. Comparing to rice field, Upland shows different characteristic of discharge due to the slope, scale, and shape of field and characteristics of rainfall event. In this study, we designed the experiment fields reflecting flat-upland characteristics with different land scale, and tried to collect the discharge and load data. Soybeans and corn were selected as target crops considering the possibility of large-scale cultivation and crop demand. The cultivation was conducted during the growth period in 2019 with 3 different field scales. Hence, we have collected the discharge data from 17 rainfall events and the load data for 8 rainfall events. As a result, the magnitude of rainfall events and the discharge duration were found to have a strong positive correlation and field discharge occurred during the period by 55% to 83% of rainfall duration. Besides we found other relationships and characteristics of rainfall event, discharge, and pollutant load and also pointed out that continuous monitoring and more data are required to derive statistically significant results. Compared with slope-field monitoring data obtained from the precedent research, the runoff ratio of the flat-fields was significantly lower than slope-fields. Overall the discharge in the slop and flat-fields shows appreciably different characteristics so that the related researches need to be further conducted to reasonably assess environmental impact of agricultural activities at flat-field.

유전자 알고리즘을 이용한 관수 저류조의 공간배치 최적화 (Optimization of Storage Tank Installation Locations for Pipeline Water Supply Using Genetic Algorithm)

  • 홍록기;박진석;장성주;이혁진;송인홍
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.43-53
    • /
    • 2022
  • Rice paddy has been actively converted into upland crop fields as more profitable upland crop cultivation are encouraged along with the decrease in rice consumption. However, the current water supply system remains mainly for paddy water supply, so research on pipeline water supply for upland cultivation is needed. The objective of this study was to optimize storage tank installation locations for pipeline water supply in reservoir irrigation districts. Five of reservoir irrigation districts were selected as the study sites and gridded of 10×10 m in size. Then genetic algorithm was adopted to evaluate the effects of spatial storage tank allocation on total pipeline cost. The lengths of the main and branch pipelines were considered as the objective cost function for the optimization of storage tank installation. Overall the shorter the branch pipeline and the longer the main pipeline, as the number of storage tanks increase. The minimal pipeline cost, i.e., optimal condition was reached when approximately 10% of the storage tank numbers to total upland plots were installed. The methodology presented in this study can be applied to determine the number and spatial arrangement of storage tanks for upland pipeline irrigation system design.