갈대방제용 제초제의 스크리닝재료를 효과적으로 확보할 수 있는 방법을 찾기 위해 갈대의 종자, 지하경, 달뿌리풀의 포복경 및 갈대의 마디절편을 이용하여 온실에서 육묘한 결과를 정리하면 다음과 같다. 1. 갈대의 종자, 지하경, 달뿌리풀의 포복경 및 갈대의 마디절편의 발아율은 각각 5, 46, 65, 75%로 나타났다. 2. 갈대의 종자를 이용하는 경우에는 보관이 용이하지만 발아율이 매우 낮고 육묘기간이 긴 문제점이 있었다. 3. 갈대의 지하경은 채취가 어렵고 채취시기도 11~3월로 제한되어 있었다. 또한 낮은 발아율, 지하경의 크기와 형태의 불균일, 초기 생육시 개체간의 차이, 보관상의 어려움 등의 문제점이 있었다. 한편 지하경을 이용하여 갈대를 육묘할 때는 원예용 부농상토를 사용하는 것이 바람직하였다. 4. 달뿌리풀의 포복경은 발아율이 비교적 높고 채취가 간편하지만 채취시기가 8~9월로 한정되어 있었으며 보관에 어려움이 있었다. 5. 갈대의 마디절편을 이용하는 경우에는 재료의 확보가 용이 하고 발아율이 비교적 양호할 뿐만 아니라 균일한 실험재료를 육성할 수 있었다. 마디절편은 채취 후 곧바로 사용해야 하며 중위절의 마디가 가장 높은 발아율을 보였으나 8월 이후에 채취한 마디에서의 발아율은 감소되는 경향이었다. 그러나 온실에서 모주를 재배하면서 필요시 절단하여 사용한다면 제초제 스크리닝용 갈대의 계속적인 육묘가 연중 가능할 것이다.
논토양(土壤)에 수도(水稻)를 포함(包含)하여 그 전후작(前後作)으로 밭작물(作物)을 다모작(多毛作) 할 경우에 토양종류별(土壤種類別) 적성정도(適性程度)를 추정(推定) 할 수 있는 논토양다모작적성등급(土壤多毛作適性等級)을 구분(區分)코자 기초시험(基礎試驗)을 실시(實施)하고 적성등급구분(適性等級區分) 기준(基準)을 설정(設定)하였다. 기초시험결과(基礎試驗結果)는 전보(前報)에서 논(論)하였고 구분기준(區分基準) 및 주요결과(主要結果)는 다음과 같다. 1. 적성등급(適性等級) 구분요인(區分要因)은 잠재생산력을 대표(代表)한 토성(土性) 및 배수등급(排水等級), 화학적특성(化學的特性)(표토염농도(表土鹽濃度), 및 심토(心土)의 반응(反應)), 환경조건(環境條件)(경사도(傾斜度) 및 온량지수(溫量指數)) 그리고 지하수위(地下水位) 및 토양모재(土壤母材) 등(等)을 선택(選擇)하여 연역(演繹) 귀납(歸納) 절충식(折衷式) 인자별가중치(因子別加重値) 상승(相乘) 상가복합법(相加複合法)에 의한 이론적(理論的) 최상치(最上値)가 100 점(點)이 되도록 하였다. 91 점이상(點以上)인 토양(土壤)을 I급지(級地)로 하고 60 점이하(點以下)인 토양(土壤)을 V급지(級地)로 하되 10 점(點) 단위(單位)로 등분(等分)하였으며 등급별(等級別) 제한인자(制限因子)는 "물리성(物理性)" "화학성(化學性)" 및 "경사도(傾斜度)" 등(等) 3가지로 하되 2개까지 병기 가능(可能)토록 하였다. 2. 온량지수(溫量指數) 110 이상(以上)인 대부분(大部分)의 영남지역(嶺南地域)은 I급지(級地)가 19%, II급지(級地) 22.7%, III급지(級地) 44.7%, IV급지(級地) 11.5% 그리고 V급지(級地)가 2.1%로서 전국(全國)의 논토양(土壤) 급지별(級地別) 분포비율(分布比率)보다는 상급지비율(上級地比率)이 약간 높았다. 3. 토양별(土壤別) 총득점(總得點)과 생산력지수간에는 유의성(有意性)($r=.922^{**}$)이 인정(認定)되어 기준(基準)의 적합도(適合度)가 높은 것으로 볼 수 있었다.
공단 인근 농경지에 중금속 농도의 상태를 파악하기 위하여 전국에 60개 공단 인근 농경지에서 1,200점(표토, 심토 각각 600점)의 토양시료를 채취하여 전함량 농도를 분석하였다. 토양 중금속 농도는 Pb, Ni, As 가 1지점씩 토양오염 우려기준을 초과한 것을 제외하고는 기준이하 수준이었다. 공단 인근 농경지에 표토와 심토 중에 중금속 농도의 평균치는 유사한 수준이었다.
Benfuresate 및 oxolinic acid를 공시농약으로 선정하여 포장조건하에서 각각의 농약을 토성이 다른 논 및 밭토양에 시용하여 시기별로 잔류량을 측정한후 6가지 kinetic models을 도입하여 잔류유형을 나타내는 최적(最適) model을 선정하고 각 model로부터 구한 반감기를 비교 평가했다. Benfuresate 및 oxolinic acid의 잔류유형은 6가지 model에 의해 유의성 있게 설명되고 있었으나 $t\frac{1}{2}$ 산출을 위해 Power Function(PF), Elovich(EL), Parabolic(PB)등의 경험식을 적용하는것은 무리가 있었다. 실험식중 결정계수($r^2$), 표준오차(SE) 및 유의성을 기준으로 평가할 때 second-order(SO)>first-order(FO)>zero-order(ZO) kinetic model 순(順)이었다. 그러나 FO model의 경우, single FO kinetics 보다는 빠른 분해단계와 느린 분해단계로 구성된 multiple FO kinetics model이 잔류유형을 더 유의성있게 나타냈고, 이 경우 SO model과 비슷한 $r^2$값을 보여 주었다. 따라서 2가지 공시농약의 잔류유형을 나타내는 최적 model은 multiple FO 또는 SO model로 평가되었다. Benfuresate의 경우 single FO model로 산출한 반감기($t\frac{1}{2}$)는 월곡통과 청원통에서 각각 49, 63일로 SO model로부터 구한 $t\frac{1}{2}$인 39, 55일 보다 $20{\sim}13%$가 길었다. Oxolinic acid의 경우 FO model로부터 구한 $t\frac{1}{2}$은 용계통, 이현통에서 각각 25, 26일로 SO model로부터 구한 $t\frac{1}{2}$ 보다 $87{\sim}51%$ 긴 것으로 평가되었다. 이런 결과는 농약의 잔류유형을 나타내는 최적 model이 농약의 종류 및 환경조건에 따라 다를 수 있고 이에 따른 $t\frac{1}{2}$도 변화폭이 크기 때문에 FO model을 일률적으로 적용하는 대신 최적 model을 선정하고 이로부터 $t\frac{1}{2}$를 산출하는 것이 바람직한 것으로 생각된다.
한국작물학회 2017년도 9th Asian Crop Science Association conference
/
pp.8-9
/
2017
Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.
현재 친환경농업을 위한 하나의 대체농법으로 인식되고 있는 유기농업실천 농가포장을 대상으로, 시설재배지 36곳, 논 10곳, 과수원 8곳을 전국에서 선발 표층토내 인산의 분포특성과 주요 화학적 특성을 조사하여 다음과 같은 결과를 얻었다. 유기농업포장의 화학성중 평균 유기물함량은 시설재배지 $44g\;kg^{-1}$, 논 $26g\;kg^{-1}$, 과수원 $39g\;kg^{-1}$으로 국내 90년대 농지내 평균 유기물 함량에 비해 높게 분포하였다. 유효인산 함량은 시설재배지 $986mg\;kg^{-1}$ 과수원 $754mg\;kg^{-1}$, 전인산은 각각 2973과 $2303mg\;kg^{-1}$으로 과량의 인산이 축적되고 있었다. 이는 유기농업실천 농가에서 질소와 인의 비율(N/Pratio)이 낮은 축분을 비옥도 관리에 주로 이용하기 때문으로 해석되었다. 시설재배지와 과수원 토양에서는 전인산(T-P)의 62~80%로 무기태 인(Inorganic-P) 형태로 존재하여 가장 높은 비율로 차지하였으며, 논토양에서는 Residual-P가 전인산의 50%로 가장 높은 비율을 차지하였다. 인산분획특성(P Fractionation)중 시설재배지와 과수원 토양내에서는 Ca-P가 약 $1,330mg\;kg^{-1}$으로 Extractable P 중 가장 높은 비율을 점하고 있었으며, 이는 두 토양의 높은 pH 영향으로 해석되었다. 반면 논토양내에서는 Fe-P가 Extractable P의 대부분을 차지하고 있어 토양의 이용특성간 분포차이가 있었다. 그리고 수용성 인산이 시설재배지 $65mg\;kg^{-1}$, 과수원 $26mg\;kg^{-1}$으로 비교적 높게 검출되었다. 결과적으로 친환경 농법으로 인식되고 있는 현재 우리의 유기농업 실천농가포장의 상당부분 인산이 과량축적되고 있으며, 이로 인한 토양환경 악화 초래 및 주변수계의 부영양화 유발가능성이 있을 것으로 예측되어 세심한 관리가 필요할 것으로 조사되었다.
우리나라의 벼안전재배는 기상환경에 의해서 크게 좌우된다. 그러므로 기상재해를 경감시키기 위한 신품종의 육성 및 재배법 연구는 매우 중요하다. 그중에서도 벼의 냉해는 그동안 여러번에 걸쳐 심한 피해를 가져다 주어 그 중요성이 확인되어 많은 연구가 실시되었다. 본 논문에서는 이와 같은 냉해의 발생원인과 기작을 살펴보고 그 경감대책을 종합하여 보다 더 효율적인 연구와 실질적인 재배의 기초자료로 활용하고저 한다. 1. 우리나라 벼 냉해 상습지는 전국적으로 1,709개소에 약 15,522ha에 분포하고 있다. 2. 벼유묘기 냉해는 발아불량, 적고현상, 고사 및 뜸묘의 발생 등으로 나타난다. 3. 영양생장기의 냉해는 활착불량으로 분얼수가 감소하여 단위면적당 수수가 적고, 생육지연 및 유수형성 지연으로 출수가 지연된다. 4. 생식생장 초기의 냉해는 지경 및 영화의 퇴화, 발육정지가 되고, 감수분열기에는 화분발육의 조해로 불념이 증가되고 수장이 단축되며 출수지연으로 수량감소에 큰 영향을 준다. 5. 출수 및 등숙기 냉해는 개화, 출수 지연으로 수분, 수정이 불량하며 이삭목의 추출불량, 등숙불량 및 쌀의 미질이 불량하게 된다. 이상과 같은 냉해를 경감시키기 위한 기술시책으로는 6. 중산간지 및 산간고냉지에 적용되며, 내냉성이 높은 품종육성 7. 밭못리 육묘와 ABA, 후치왕, 다찌에스 등의 생장조정제를 이용한 건묘육성 8. 냉수답이나 냉해상습지에는 토양개량 및 육기작 시용으로 보비로 튼튼한 벼생육을 가져 온다. 9. 냉해시에는 깊게 물대기와 냉수관개시에는 우회수로, 비닐튜브 등을 이용한 물온도 높여 주기 등 합리적인 물관리가 필요하다. 10. 각 지역의 최고, 평균, 최저온도를 기본으로 한 안전작기를 책정하여 적기에 적품종을 재배하여야 한다.
유기물(有機物) 시용(施用)의 토양물리성(土壤物理性) 개선(改善) 효과(效果)와 이에 따른 토양생산력(土壤生産力)과의 관계(關係)를 지금까지 이루어진 국내외(國內外) 연구결과(硏究結果)를 가지고 고찰(考察)해 보았으며, 우리나라 경작지(耕作地) 토양(土壤)의 유기물함량(有機物含量)과 토양물리성(土壤物理性)의 문제점(問題点)을 개략적(槪略的)으로 알아 보고 토양별(土壤別)로 유기물(有機物) 시용(施用)의 물리성(物理性) 개선(改善) 효과(效果)를 비교(比較) 검토(檢討)해 보았다. 유기물(有機物) 시용(施用)은 식질토(埴質土)의 투수(透水), 통기성(通氣性)을 개선(改善)하고 사질토(砂質土)의 보수력(保水力)을 증진(增進)하는 효과(效果)가 크며 토양(土壤)의 내침식성(耐浸蝕性) 및 내압밀성(耐壓密性)을 증대(增大)시키므로서 토양생산력(土壤生産力) 증진(增進), 토양보전(土壤保全), 농기계작업(農機械作業)에 매우 유익(有益)한 효과(效果)를 가져 올 수 있다. 우리나라 경작지(耕作地)에서의 유기물(有機物)의 물리성(物理性) 개선효과(改善效果)는 일반적(一般的)으로 논보다는 밭에서 훨씬 크고 토양(土壤) 유형별(類型別)로는 답(畓)에서는 미숙답(未熟畓) 보통답(普通畓)에서 크고, 전(田)에서는 사질전(砂質田) 중점출(重粘出)에서 높을 것으로 생각된다. 따라서 유기물(有機物) 시용효과(施用效果)를 극대화(極大化)한다는 면(面)에서 보면 논보다는 밭, 숙전(熟田)보다는 신개간지(新開墾地)에 더 많은 유기물(有機物)이 시용(施用)되어야 할 것이다. 토양물리성(土壤物理性) 개선면(改善面)에서 볼때 최적(最適) 토양유기물함량(土壤有機物含量)은 3.0-3.5%정도(程度)로 정(定)할 수 있으며 우리나라 경작지(耕作地)의 유기물함량(有機物含量)은 매우 낮은 수준(水準)이기 때문에 보다 많은 유기물(有機物)을 계속(繼續) 시용(施用)하여 토양유기물(土壤有機物) 함량(含量)을 증가(增加)시켜 주는데 많은 노력(努力)을 경주(傾注)해야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.