• 제목/요약/키워드: upflow sludge blanket process

검색결과 32건 처리시간 0.017초

USB 공법에 의한 $NO_3^--N$ 함유 폐수처리 (Treatment of wastewater containing nitrate using upflow sludge blanket process)

  • 김형석;은종극;박승조
    • 한국환경과학회지
    • /
    • 제4권3호
    • /
    • pp.87-87
    • /
    • 1995
  • This study was investigated with denitrification of wastewater containing nitrate using upflow sludge blanket process. Contents of this study were the nitrogen gas Production, relationship between HRT and COD/$NO_3^--N$ ratio in case of various hydrogen donor addition, relationship between nitrate loading rate and various hydrogen donor addition.

USB 공법에 의한 $NO_3^--N$ 함유 폐수처리 (Treatment of wastewater containing nitrate using upflow sludge blanket process)

  • 김형석;은종극;박승조
    • 한국환경과학회지
    • /
    • 제4권3호
    • /
    • pp.239-247
    • /
    • 1995
  • This study was investigated with denitrification of wastewater containing nitrate using upflow sludge blanket process. Contents of this study were the nitrogen gas Production, relationship between HRT and COD/$NO_3^--N$ ratio in case of various hydrogen donor addition, relationship between nitrate loading rate and various hydrogen donor addition.

  • PDF

각종 수소공여체의 첨가에 의한 $NO_3^--N$ 함유 폐수의 탈질 (Denitrification of the wastewater containing nitrate by various hydrogen donor addition)

  • 김형석;은종극;박승조
    • 한국환경과학회지
    • /
    • 제4권3호
    • /
    • pp.229-237
    • /
    • 1995
  • This study was investigated with denitrification of wastewater containing nitrate using upflow sludge blanket process. Contents of this study were the NO3--N removal efficiency by various hydrogen donor addition, determination of optimum COD/$NO_3^--N$ ratio and characteristics of granular sludge.

  • PDF

각종 수소공여체의 첨가에 의한 $NO_3^--N$ 함유 폐수의 탈질 (Denitrification of the wastewater containing nitrate by various hydrogen donor addition)

  • 김형석;은종극;박승조
    • 한국환경과학회지
    • /
    • 제4권3호
    • /
    • pp.77-77
    • /
    • 1995
  • This study was investigated with denitrification of wastewater containing nitrate using upflow sludge blanket process. Contents of this study were the NO3--N removal efficiency by various hydrogen donor addition, determination of optimum COD/$NO_3^--N$ ratio and characteristics of granular sludge.

입상슬러지의 동력학적 인자 산정 (Evaluation of Biological Kinetic Parameters in the Granular Sludge)

  • 이재관;양병수
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

질산염을 함유한 폐수의 상향류식 공법에 의한 혐기성 처리 (Anaerobic Treatment of Wastewater containing Nitrate by Upflow Process)

  • 이원식;은종극
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.95-105
    • /
    • 1998
  • This research was investigated which denitrification of wastewater containing nitrate, using upflow anaerobic sludge blanket process. The upflow anaerobic sludge blanket process is also used for both artifical and industrial wastewater. Main ingredients investigated in the artifical and industrial wastewater experiment were the determination of optimum organism/nitrate ratios, nitrate removal efficiency by various hydrogen donor addition and characteristics of granular sludge and gas production in case of various hydrogen donor addition. From the experimental results the following conclusions were made: In case of adding methanol, ethanol and sodium acetate as hydrogen donor granular sludge was formed 50 days after seeding. Average diameter of granular sludge was 4.0 mm and settling velocity was 37 cm/min. Production rate of gas 3.3 L/d in case of adding methanol as hydrogen donor in wastewater containing 150mg/L nitrate. However adding ethanol and sodium acetate as hydrogen donor, gas production rate were 2.2-2.7L/d respectively. In case of adding methanol as hydrogen donor treatability of artifical wastewater contained 150mg/L as nitrate was about 93%. But in addition of sodium acetate in wastewater contained 40mg.L as nitrate, nitrate removal efficiency was 80%.

  • PDF

변형 혐기성 여상 반응조에서 교반강도가 유기물 제거효율에 미치는 영향 (Mixing effect on organic removal efficiency in treating low-strength wastewater using a modified anaerobic filter reactor)

  • 정병곤;이헌모
    • 한국환경과학회지
    • /
    • 제5권4호
    • /
    • pp.513-524
    • /
    • 1996
  • Laboratory investigation was conducted to evaluat the mixing effects on organic removal efficiency to treat low-strength synthetic wastewater using modified anaerobic - filter reactor combining anaerobic filter and upflow anaerobic sludge blanket. Using the modified process the low-strength wastewater like municipal sewage could be treated with 85% T-COD removal efficiency at hydraulic retention time of 6 hours. At the constant organic loading of 0.5 kg COD/m 3-day, the organic removal efficiency and effluent COD concentration are increased as influent COD concentration increased from 125 mg/l to 500 mg/l. Mixing effects on organic removal efficiency are evident and optimum mixing speed is found as 50RPM. Placing the granular sludge and media on which slime layer was pre-formed into the reactor seemed to be very effective In achieving short start-up period. Therefore, the steady state was achived after 4 weeks and 1 week based on T-COD and S-COD, respectively.

  • PDF

혐기성 슬러지에 의한 폐수의 질소 제거에 관한 연구 (A Study on the Nitrogen Control in the Wastewater by Upflow Anaerobic Sludge Blanket.)

  • 은종극
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.75-81
    • /
    • 1997
  • The study was investigated with denitrification of wastewater containing nitrate using upflow anaerobic sludge blanket process. Contents of this study were the determination of nitrate removal efficiency by various hydrogen donor addition, relationship between HRT, nitrate loading rate and growth constant of microorganism in case or various hydrogen donor addition etc. Results from this study were summurized as follows. In case of adding methanol, ethanol, sodium acetate as hydrogen donor, treatability of wastewater contained 200mg/l as nitrate was about 91%. But in addition of ethanol, sodium acetate in wastewater contained 40mg/l as nitrate, nitrate removal efficiency was 80%. While the treatment of nitrate showed the yield coefficient of microorganisms(Y) as 234.8, 234.35, and 247.68 g/VSS/g nitrate, respectively, showed specific growth rate(K) as 0.885, 0.934 and 0.917 respectively.

  • PDF

Anammox Bacteria Enrichment in Upflow Anaerobic Sludge Blanket (UASB) Reactor

  • Thuan Tran-Hung;Jahng Deok-Jin;Jung Jin-Young;Kim Dong-Jin;Kim Won-Kyoung;Park Young-Joo;Kim Ji-Eun;Ahn Dae-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.345-351
    • /
    • 2004
  • We investigated the anaerobic ammonium oxidation (anammox) reaction in a lab-stale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater The experiment was performed during 260 days under conditions of constant ammonium concentration ($50\;mg\;NH_4^+-N/L$) and different nitrite concentrations ($50{\~}150\;mg\;NO_2-N/L$). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as Candidatus B. Anammoxidans and K. Stuttgartiensis using fluorescence in situ hybridization (FISH ) method.

Anaerobic Ammonium Oxidation Process in an Upflow Anaerobic Sludge Blanket Reactor with Granular Sludge Selected from an Anaerobic Digestor

  • Tran, Hung-Thuan;Park, Young-Joo;Cho, Mi-Kyeoung;Kim, Dong-Jin;Ahn, Dae-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.199-204
    • /
    • 2006
  • The purpose of this work was to evaluate the development of the anammox process by the use of granular sludge selected from a digestion reactor as a potential seed source in a lab-scale UASB (upflow anaerobic sludge blanket) reactor system. The reactor was operated for approximately 11 months and was fed by synthetic wastewater. After 200 days of feeding with $NH_4^+\;and\;NO_2^-$ as the main substrates, the biomass showed steady signs of ammonium consumption, resulting in over 60% of ammonium nitrogen removal. This report aims to present the results and to more closely examine what occurs after the onset of anammox activity, while the previous work described the start-up experiment and the presence of anammox bacteria in the enriched community using the fluorescence in situ hybridization (FISH) technique. By the last month of operation, the consumed $NO_2^--N/NH_4^+-N$ ratio in the UASB reactor was close to 1.32, the stoichiometric ratio of the anammox reaction. The obtained results from the influent-shutdown test suggested that nitrite concentration would be one key parameter that promotes the anammox reaction during the start-up enrichment of anammox bacteria from granular sludge. During the study period, the sludge color gradually changed from black to red-brownish.