• Title/Summary/Keyword: updating time

Search Result 453, Processing Time 0.03 seconds

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

A Study on the correcting and updating the Digital Map using Remotely Sensed Data (위성영상을 이용한 수치지도 수정/갱신 방안 연구)

  • 윤여상;김준철;박수영;최종현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.391-396
    • /
    • 2003
  • The digital map expresses natural topography and artificial things with 3D position coordinates in the computer such as the road, railway, building, river, mountain, paddy and dryland. Therefore, those should contribute to the information-oriented society by maintaining information and providing it to users quickly. However it is difficult to maintain the most recent topographic information all the time because of restricted budget and time. The purpose of this study is to investigate and analyze the updating area of the digital map using remotely sensed data, and to furnish the useful information reducing cost and time. To predict updating area of the digital map, we applied the urban changes analysis method to Landsat TM images from produced date of the digital map to up-to-date. Classification method for urban change analysis applied single band process algorithm. This study presents that updating area of the digital map is predicted by only the rate of 40% on total research area.

  • PDF

Dynamic Analysis of a KAERI Channel Type Shear Wall: System Identification, FE Model Updating and Time-History Responses (KAERI 채널형 전단벽체의 동적해석; 시스템판별, FE 모델향상 및 시간이력 응답)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • KAERI has planned to carry out a series of dynamic tests using a shaking table and time-history analyses for a channel-type concrete shear wall to investigate its seismic performance because of the recently frequent occurrence of earthquakes in the south-eastern parts of Korea. The overall size of a test specimen is b×l×h =2500 mm×3500 mm×4500 mm, and it consists of three stories having slabs and walls with thicknesses of 140 mm and 150 mm, respectively. The system identification, FE model updating, and time-history analysis results for a test shear wall are presented herein. By applying the advanced system identification, so-called pLSCF, the improved modal parameters are extracted in the lower modes. Using three FE in-house packages, such as FEMtools, Ruaumoko, and VecTor4, the eigenanalyses are made for an initial FE model, resulting in consistency in eigenvalues. However, they exhibit relatively stiffer behavior, as much as 30 to 50% compared with those extracted from the test in the 1st and 2nd modes. The FE model updating is carried out to consider the 6-dofs spring stiffnesses at the wall base as major parameters by adopting a Bayesian type automatic updating algorithm to minimize the residuals in modal parameters. The updating results indicate that the highest sensitivity is apparent in the vertical translational springs at few locations ranging from 300 to 500% in variation. However, their changes seem to have no physical meaning because of the numerical values. Finally, using the updated FE model, the time-history responses are predicted by Ruaumoko at each floor where accelerometers are located. The accelerograms between test and analysis show an acceptable match in terms of maximum and minimum values. However, the magnitudes and patterns of floor response spectra seem somewhat different because of the slightly different input accelerograms and damping ratios involved.

DISTRIBUTED ALGORITHMS SOLVING THE UPDATING PROBLEMS

  • Park, Jung-Ho;Park, Yoon-Young;Choi, Sung-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.607-620
    • /
    • 2002
  • In this paper, we consider the updating problems to reconstruct the biconnected-components and to reconstruct the weighted shortest path in response to the topology change of the network. We propose two distributed algorithms. The first algorithm solves the updating problem that reconstructs the biconnected-components after the several processors and links are added and deleted. Its bit complexity is O((n'+a+d)log n'), its message complexity is O(n'+a+d), the ideal time complexity is O(n'), and the space complexity is O(e long n+e' log n'). The second algorithm solves the updating problem that reconstructs the weighted shortest path. Its message complexity and ideal-time complexity are $O(u^2+a+n')$ respectively.

Performance Trend Analysis For IN System Based On DB Updating Method (DB 수정방식에 따른 지능망 시스템의 성능추이분석)

  • 노용덕
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.45-53
    • /
    • 2002
  • The main idea behind the Intelligent Networks(IN) concept is the separation of switching functionality from the service control, in order to meet various service requirements of subscribers and development of new services in time. In (N+1) type Intelligent Network with FEP-BEP framwork, each SCP-BEP system maintains its own subscibers' database respectively. In this case, DB updating operations at each SCP-BEP should be peformed concurrently such that DB updating method could affect the overall system performance. Moreover, it is not easy to predict the current system capacity to satisfy the future IN subscribers' service needs. In this paper, we discuss how much DB updating method affects the performance trends of (N+1) type Intelligent Network with FEP-BEP system by means of the simulation technique as the number of calls increase. The average turnaround time is used as a system performance measure.

  • PDF

Self-Updating One-Time Password Mutual Authentication Protocol for Ad Hoc Network

  • Xu, Feng;Lv, Xin;Zhou, Qi;Liu, Xuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1817-1827
    • /
    • 2014
  • As a new type of wireless network, Ad hoc network does not depend on any pre-founded infrastructure, and it has no centralized control unit. The computation and transmission capability of each node are limited. In this paper, a self-updating one-time password mutual authentication protocol for Ad hoc network is proposed. The most significant feature is that a hash chain can update by itself smoothly and securely through capturing the secure bit of the tip. The updating process does not need any additional protocol or re-initialization process and can be continued indefinitely to give rise to an infinite length hash chain, that is, the times of authentication is unlimited without reconstructing a new hash chain. Besides, two random variable are added into the messages interacted during the mutual authentication, enabling the protocol to resist man-in-the-middle attack. Also, the user's identity information is introduced into the seed of hash chain, so the scheme achieves anonymity and traceability at the same time.

Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model

  • Zhang, Jing;Au, Francis T.K.;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.157-173
    • /
    • 2020
  • In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Predicting Nuclear Power Plant Accidents in Korea (국내 원자력발전소 사고 예측)

  • Yang, Hee-Joong
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.79-89
    • /
    • 1993
  • We develop a statistical model to describe nuclear power plant accidents and predict time to next accident of various levels. We adopt Bayesian approach to obtain posterior and predictive distributions for the time to next accident. We also derive an approximation method to solve many dimensional numerical integration problems that we often encounter in a Bayesian approach. We introduce Influence Diagrams in modeling, and parameter updating, thereby the dependency or independency among model parameters are clearly shown. Also Separable Updating Theorem is utilized to easily obtain the posterior distributions.

  • PDF

FEATURE-BASED SPATIAL DATA MODELING FOR SEAMLESS MAP, HISTORY MANAGEMENT AND REAL-TIME UPDATING

  • Kim, Hyeong-Soo;Kim, Sang-Yeob;Seo, Sung-Bo;Kim, Hi-Seok;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.433-436
    • /
    • 2008
  • A demand on the spatial data management has been rapidly increased with the introduction and diffusion process of ITS, Telematics, and Wireless Sensor Network, and many different people use the digital map that offers various thematic spatial data. Spatial data for digital map can manage to tile-based and feature-based data. The existing tile-based digital map management systems have difficult problems of data construction, history management, and updating based on a spatial object. In order to solve these problems, this paper proposed the data model for the feature-based digital map management system that is designed for feature-based seamless map, history management, real-time updating of spatial data, and analyzed the validity and utility of the proposed model.

  • PDF