• Title/Summary/Keyword: up-and-down motion

Search Result 194, Processing Time 0.027 seconds

Improvement of Dynamic Characteristic of Large-Areal Planar Stage Using Induction Principle (인덕션 방식을 이용한 평면 스테이지의 동특성 개선)

  • Jung, Kwang-Suk;Park, Jun-Kyu;Kim, Hyo-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.675-682
    • /
    • 2009
  • Instead of direct driving like BLDC, the induction principle is adopted as a driving one for planar stage. The stage composed of four linear induction motors put in square type is activated by two-axial forces; low-frequency attractive force and thrust force of the linear induction motors. Here, the modified vector control whose new inputs are q-axis current and dc current biased to three phase current instead of d-axis current or flux current is applied extensively to overall motion of the stage. For the developed system, the precision step test and the constant velocity test are tried to guarantee its feasibility for TFT-LCD pattern inspection. However, to exclude a discontinuity due to phase shift and minimize a force ripple synchronized with the command frequency, the initial system is revised to the antagonistic structure over the full degree of freedom. Concretely describing, the porous air bearings guide an air-gapping of the stage up and down and a pair of liner induction motors instead of single motor are activated in the opposite direction each other. The performances of the above systems are compared from trapezoid tracking test and sinusoidal test.

Dynamic Stability and Response Analysis of Piping System with Internal Flow (내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석)

  • 이우식;박철희;홍성철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1861-1871
    • /
    • 1991
  • In this study, the piping system conveying unsteady flow is considered. The effects of coupling between the pipe motion and the velocity and pressure of fluid are included for the dynamic stability and response analysis of the piping system. The dynamic equations for a piping system are derived by Newtonian dynamics. For the momentum and continuity equations, the concept of moving control volume is applied. Thus, the governing equations derived herein are valid for the applications to the vibration problems occurred when a piping system starts up or shuts down and also when the valves and pumps operate. For a simply supported straight pipe, the stability analysis is conducted for various nondimensional parameters. The dynamic responses, in both stable and unstable region of stability chart, are numerically tested by the use of central difference method.

The Impedance Profile of Acupuncture Points

  • Kovich, Fletcher
    • Journal of Acupuncture Research
    • /
    • v.35 no.3
    • /
    • pp.104-107
    • /
    • 2018
  • Background: Reduced impedance at acupuncture points (acupoints) is a well-known phenomenon; and the impedance has been found to reduce further in relation to organ stress. The author hypothesises that any changes to an organ's state or function are communicated to its related acupoints in real time. As part of a research project to demonstrate this communication, the impedance of several acupoints was studied in real time. Methods: The acupoints were located electrically, and a 40 kHz signal was used to sample the impedances. Samples were taken at each acupoint and also at a 6 mm radius. The sample rate was 1 kHz and the session lasted for 5 minutes. The results presented here were taken from a single patient. Results: The impedance at an acupoint's centre frequently changed in an inverse relationship to the impedance at a 6 mm radius (i.e. when one goes up, the other goes down) and the left and right instance of the same acupoint usually displayed different impedance features. Conclusion: When studying the fine detail of real-time impedance samples taken from the centre of an acupoint and also from a 6 mm radius, this previously unreported contrary-motion phenomenon provides a useful tool to differentiate between artefact and genuine organ-related features in an impedance trace.

Development of Automatic Feeding System for Corrugate Cardboard Boxes Using TRIZ (트리즈를 이용한 포장 박스용 골판지 자동 급지기 개발)

  • Park, Yong-Taek;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.95-102
    • /
    • 2007
  • A feeding system is a key component in manufacturing packing boxes such as printing, slotting and gluing. The role of the feeding system is to feed corrugate cardboards which is usually tick and large. So, a special method is necessary to feed corrugate cardboards. This paper suggests a concept and an automatic feeding machine to feed corrugated cardboards using TRIZ, the theory of inventive problem solving. The automatic feeding machine consists of units to regulate the machine according to length and width of corrugated cardboards, a feeding part with a plurality of small rollers, and a sucking part which intensify frictional force between rollers and the lowest feeding cardboard. In particular, the feeding part is composed of an up-and-down motion plate with holes to suck the lowest corrugated cardboard as well as small rolling rollers after stopping in a moment. Thus this machine does not sensitive to size of corrugated cardboards and also can keep feeding accuracy during feeding fast.

Biomechanical Analysis of the Effect that Various Loads has on the Lower Limbs while Descending Stairs (성인의 하향계단 보행 시 중량에 따른 하지의 운동역학적 변인 분석)

  • Moon, Je-Heon;Chun, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • The purpose of this study was to analyze the effect that various loads have on the lower limb biomechanics. The following variables were measured and analyzed; performance time for each phase, lower limb moments and joint angles, and ground reaction forces. The kinematic and kinetic data was recorded by 2 force platforms and a motion capture system while 12 healthy adults in their twenties stepped down three steps under loads of 0%, 10%, 20% BW. Results are as follows. First, the different loading conditions did not seem to significantly affect the performance times and the joint angles. Second, the largest ground reaction forces were observed at the 1 step at the 10% BW condition. Finally, at the 0% BW loading condition the right hip extension moment was the smallest and the left hip flexion moment was the largest. The results show that there are not any significant changes in the biomechanics of the lower limbs under loading conditions up to 20% BW. Further investigations including more loading conditions with more weights and more additional steps analyzed are needed.

Noise and flow analysis of lift-type disk wind power System (양력형 디스크 풍력 발전기의 유동 및 소음 해석)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we investigate the flow characteristics of lift-type disk which behaves the up-down motion using the large eddy simulation (LES) and immersed boundary method (IBM). Also, we perform the noise analysis using pressure field at 1.35 m distance and reveal the cause of noise to observe the vortical structure analysis of flow result. It is observed that vortical structure and wind shear were generated at leading edge and tower with high velocity deficit and flow separation. High magnitude of flow noise was observed in low frequency range which is from 30 Hz to 60 Hz. It was observed that vortical structure at leading edge was generated in frequency range from 33.3 Hz to 41.6 Hz. Temporal characteristic in vortical structure at leading edge was similar to noise characteristics, having the similar frequency ranges.

A study of Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Ahn, Kyoung-Kwan;Lee, Min-Su;Cho, Yong-Rae;Yoon, Ju-Hyeon;Jo, Woo-Keun;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1075-1080
    • /
    • 2007
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

  • PDF

Nonlinear Behaviors of a Gas-filled Bubble Oscillator with Large Amplitude of Excitation (큰 압력 진폭에 의해 구동되는 기포진동체의 비선형 거동 특성)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • The bubble model by Keller and Prosperetti is adapted to solve the nonlinear oscillation of a gas bubble. This formulation leads to accurate results since it introduces the energy equation instead of the polytropic assumption for the bubble interior. The numerical method used in this study is stable enough to handle large amplitude of bubble oscillation. The numerical results show some interesting nonlinear phenomena fur the bubble oscillator. The excitation changes the natural frequency of the bubble and makes some harmonic resonances at $f/f_0=1/2, 1/3$ and so on. The natural frequency of a bubble oscillator decreases compared with the linear case result, which means that the nonlinear bubble oscillation system is a "softening"system. In addition, the frequency response curve jumps up or down at a certain frequency. It is also found that there exist multi-valued regions in the frequency response curve depending on the initial conditions of bubble. The dependency of the bubble motion on the initial condition can generate extremely large pressure and temperature which might be the cause of the acoustic cavitation and the sonoluminescence.inescence.

Magnetic Actuator for a Capsule Endoscope Navigation System

  • Chiba, Atsushi;Sendoh, Masahiko;Ishiyama, Kazushi;Arai, Ken Ichi;Kawano, Hironao;Uchiyama, Akio;Takizawa, Hironobu
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.89-92
    • /
    • 2007
  • The authors propose a magnetic actuator for use as a navigation system for capsule endoscopes. The actuator is composed of a capsule dummy, a permanent magnet inside the capsule, and an external spiral structure. The device rotates and propels wirelessly when exposed to an external rotational magnetic field. In this study we measured the effect of the spiral shape on the velocity and thrust force properties. According to our experimental results, the actuator obtained a maximum velocity and thrust force when the spiral angle was set at 45 degrees, the number of spirals was set at 4, and the spiral-height was set at 1-mmf. We also conducted a motion test in the large intestine of a pig placed on a 30 degrees slope. The actuator passed through a 700 mm length of the intestine in about 300 s. The device also managed to travel up and down the 30 degrees slope with no difficulty whatsoever. Our results demonstrate the great potential of this actuator for use as a navigation system for capsule endoscopes.

Hand gesture based a pet robot control (손 제스처 기반의 애완용 로봇 제어)

  • Park, Se-Hyun;Kim, Tae-Ui;Kwon, Kyung-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.145-154
    • /
    • 2008
  • In this paper, we propose the pet robot control system using hand gesture recognition in image sequences acquired from a camera affixed to the pet robot. The proposed system consists of 4 steps; hand detection, feature extraction, gesture recognition and robot control. The hand region is first detected from the input images using the skin color model in HSI color space and connected component analysis. Next, the hand shape and motion features from the image sequences are extracted. Then we consider the hand shape for classification of meaning gestures. Thereafter the hand gesture is recognized by using HMMs (hidden markov models) which have the input as the quantized symbol sequence by the hand motion. Finally the pet robot is controlled by a order corresponding to the recognized hand gesture. We defined four commands of sit down, stand up, lie flat and shake hands for control of pet robot. And we show that user is able to control of pet robot through proposed system in the experiment.

  • PDF