• 제목/요약/키워드: unsupervised image segmentation

검색결과 38건 처리시간 0.021초

압축 영상의 블록화 제거를 위한 적응적 고속 영상 복원 필터 (An Adaptive Fast Image Restoration Filter for Reducing Blocking Artifacts in the Compressed Image)

  • 백종호;이형호;백준기;윈치선
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 학술대회
    • /
    • pp.223-227
    • /
    • 1996
  • In this paper we propose an adaptive fast image restoration filter, which is suitable for reducing the blocking artifacts in the compressed image in real-time. The proposed restoration filter is based on the observation that quantization operation in a series of coding process is a nonlinear and many-to-one mapping operator. And then we propose an approximated version of constrained optimization technique as a restoration process for removing the nonlinear and space varying degradation operator. We also propose a novel block classification method for adaptively choosing the direction of a highpass filter, which serves as a constraint in the optimization process. The proposed classification method adopts the bias-corrected maximized likelihood, which is used to determine the number of regions in the image for the unsupervised segmentation. The proposed restoration filter can be realized either in the discrete Fourier transform domain or in the spatial domain in the form of a truncated finite impulse response (FIR) filter structure for real-time processing. In order to demonstrate the validity of the proposed restoration filter experimental results will be shown.

  • PDF

마르코프 랜덤필드를 이용한 무관리형 화상분할 알고리즘 (Unsuperised Image Segmentation Algorithm Using Markov Random Fields)

  • 박재현
    • 한국정보처리학회논문지
    • /
    • 제7권8호
    • /
    • pp.2555-2564
    • /
    • 2000
  • 본 논문에서는 새로운 무관리형 화상분할 알고리즘이 제안된다. 제안된 알고리즘은 화상에 내재되어 있는 구조 정보를 모델링하기 위하여 마르코프 랜덤필드의 특성을 이용하고 있다. 텍스쳐 화상은 정상상태의 가우스 마르코프 랜덤필드가 2차원의 격자구조 위에 실현된 상태로 간주되었으며 2차의 비순차근방을 갖는 조건부 자기회귀함수를 이용하여 모델링 되었다. 화상의 경계면 감출을 위하여 마스크로 선택된 두 영역에 대한 가설검정이 수행된다. 이 방법은 선택된 두 영역이 같은 종류의 텍스쳐라고 가정을 한 후 조건부 자기회귀모델의 매개변수를 최소평균제곱오차 측면에서 추정한다. 가설이 거절되면 두 영역의 상이함을 측정한 그 값이 선택된 영역에 누적된다. 이와 겉은 방법을 통하여 잠재적인 경제지도가 얻어지며, 이것을 통하여 여러 종류의 텍스쳐 화상의 분할이 미세오류경계 없이 이루어지게 된다. 제안된 알고리즘의 성능은 인공화상 뿐만 아니라 실제의 자연화상을 이용한 실험을 통하여 입증되었으며 일체의 사전정보 없이도 만족할 만한 결과를 보여 주었다.

  • PDF

텍스쳐 방향특징에 의한 비교사 텍스쳐 영상 분할 (Unsupervised Texture Image Segmentation with Textural Orientation Feature)

  • 이우범;김욱현
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.325-328
    • /
    • 2000
  • 텍스쳐 분석은 장면 분할, 물체 인식, 모양과 깊이 인식 등의 많은 영상 처리 분야에서 중요한 기술 중의 하나이다. 그러나 실영상에 포함된 다양한 텍스쳐 성분에 대해서 보편적으로 적용 가능한 효율적인 방법들에 대한 연구는 미흡한 실정이다. 본 논문에서는 텍스쳐 인식을 위해서 비교사 학습 방법에 기반 한 효율적인 텍스쳐 분석 기법을 제안한다. 제안된 방법은 텍스쳐 영상이 지닌 방향특징 정보로서 각(angle)과 강도(power)를 추출하여 자기 조직화 신경회로망에 의해서 블록기반으로 군집화(clustering)된다. 비교사적 군집 결과는 통합(merging)과 불림(dilation) 과정을 통해서 영상에 내재된 텍스쳐 성분의 분할을 수행한다. 제안된 시스템의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 적용한 후 그 유효성을 보인다.

  • PDF

Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원 (Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제30권6호
    • /
    • pp.817-827
    • /
    • 2014
  • 위성 원격 탐사에서는 센서 운영 환경으로 인하여 영상을 수집하는 동안 영상의 질 저하가 일어나며 이러한 영상의 질 저하는 관측된 자료로부터 유용한 정보를 확인하거나 추출하는 데 악 영향을 미치는 번짐 현상(blurring)과 잡음 (noise)을 야기시킨다. 본 연구는 원격 탐사 영상 자료의 질 저하 현상을 모형화하기 위해 Gaussian 가산 잡음과 Markov random field로 정의되는 공간적 연결성을 가정하였다. 그리고 질 저하된 관측 자료로부터 원래 강도의 영상을 복원하기 위한 Point-Jacobian 반복 maximum a posteriori (MAP) 추정 법을 제안한다. 제안 연구는 이웃 창의 형태로 8 개 방향의 창으로 구성된 방사형을 사용하며 각 방향에서의 중심 화소와의 이웃 화소들 간의 Mahalanobis 제곱 거리를 경계 근접성 측정치로 사용한다. 제안 방법의 성능을 평가하기 위해서 고해상도 영상 자료에 나타날 수 있는 다양한 형태의 패턴을 사용하는 simulation 자료를 생성하여 화소 단위 분류 법을 사용하여 정량적 평가를 수행하였고 한반도 안양 북부 지역에서 관측된 1 m 급 IKONOS 자료의 무감독 분할을 통해 정성적 평가를 수행하였다. 실험 결과는 고해상도 원격 탐사 자료 분석에서 제안 영상 복원 법을 적용하면 현저히 분석의 정확성을 높이는 것을 보여 준다.

剩餘數體系를 이용한 자승오차 패턴 클러스터링 프로세서의 실현 (Implementation of the Squared-Error Pattern Clustering Processor Using the Residue Number System)

  • 김형민;조원경
    • 대한전자공학회논문지
    • /
    • 제26권2호
    • /
    • pp.87-93
    • /
    • 1989
  • 패턴인식과 영상처리 응용에 이용되는 자승오차 패턴 클러스터링 알고리듬은 특징벡터 행렬의 연산에 상당한 처리시간은 요구한다. 그러므로 본 논문은 병렬처리와 파이프라인 특성을 갖는 잉여수체계를 이용한 고속의 자승오차 패턴 클러스터링 프로세서를 제안한다. 제안된 자승오차 패턴 클러스터링 프로세서는 영상분할 실험으로부터 의미있는 영역으로 나눌 수 있는 클러스터의 수에 대하여 만족할 만한 오차를 보이며 80287 수치 연산용 프로세서보다 약 200배 빠름을 보인다. 그 결과 대규모의 데이타를 실시간으로 처리하여야 하는 응용분야에 효과적으로 이용할 수 있음을 확인하였다.

  • PDF

낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출 (Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences)

  • 박정우;김창익
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.851-861
    • /
    • 2006
  • 영상을 낮은 피사계 심도로 찍는 카메라 기법은 전통적으로 널리 이용되는 영상 취득 기술이다. 이 방법을 사용하면 사진사가 사진이나 동영상을 찍을 때 영상의 관심 영역에만 포커스를 두어 선명하게 표현하고 나머지는 흐릿하게 함으로써 자신의 의도를 보는 이에게의 분명하게 전달 할 수 있다. 본 논문은 이러한 피사계 심도가 낮은 동영상 입력에 대하여 사용자의 도움 없이 포커스 된 비디오 객체를 추출하는 새로운 방법을 제안한다. 본 연구에서 제안하는 방법은 크게 두 모듈로 나뉜다. 첫 번째 모듈에서는 동영상의 첫 번째 프레임에 대해서 포커스 된 영역과 그렇지 않은 흐릿한 부분을 자동으로 구분하여 관심 물체만을 추출한다. 두 번째 모듈에서는 첫 번째 모듈에서 구한 관심 물체의 모델을 바탕으로 동영상 프레임에서의 관심 물체만을 실시간이나 실시간에 가깝게 추출한다. 본 논문에서 제안하는 방법은 가상현실(VR)이나 실감 방송, 비디오 인덱싱 시스템과 같은 여러 응용 분야에 효과적으로 적용될 수 있고, 이러한 유용성은 실험 결과를 통해 보였다.

터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안 (Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.508-518
    • /
    • 2023
  • 이 논문은 LiDAR 스캔 또는 사진측량 기술에 의해 재구성된 3D 디지털 모델을 기반으로 터널 벽면의 불연속면을 자동으로 매핑하는 새로운 접근 방식을 제안한다. 본 제안에서는 U-Net이라 불리는 딥러닝 시맨틱 영역분할 모델을 사용하며, 터널 막장면의 3D 지형 모델에서 불연속면 영역을 식별해 낸다. 제안된 딥러닝 모델은 투영된 RGB 이미지, 면의 깊이 이미지 및 국부적인 면의 표면 속성 이미지(즉, 법선 벡터 및 곡률 이미지)를 포함한 다양한 정보를 종합 학습하여 기본 3차원 이미지에서 불연속면 영역을 효과적으로 분할한다. 이후 영역분할 결과는 면의 깊이 맵과 투영 행렬을 사용하여 3D 모델로 다시 투영시키고, 3D 공간 내에서 불연속면의 위치 및 범위를 정확하게 표현한다. 영역분할 모델의 성능은 영역 분할된 결과를 해당 지면 실측 값과 비교함으로써 평가하였으며, IoU(intersection-over-union) 값이 약 0.8 정도로 나타나 영역분할 결과의 높은 정확성을 확인하였다. 여전히 학습데이터가 제한적 이었음에도 불구하고, 제안 기법은 3D 모델의 점군 데이터를 불연속면의 유사군으로 그룹화하기 위해 전 막장면의 법선 벡터와 클러스터링과 같은 비지도 학습기반 알고리즘에만 의존하던 기존 접근 방식의 한계의 극복 가능성을 보여주었다.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.